Aimone JB, Li Y, Lee SW, Clemenson GD, Deng W, Gage FH (2014) Regulation and function of adult neurogenesis: from genes to cognition. Physiol Rev 94(4):991–1026. https://doi.org/10.1152/PHYSREV.00004.2014
Article CAS PubMed PubMed Central Google Scholar
Kempermann G, Gage FH (1998) Closer to neurogenesis in adult humans. Nat Med 4(5):555–557. https://doi.org/10.1038/NM0598-555
Article CAS PubMed Google Scholar
Rodrigues RJ, Marques JM, Cunha RA (2019) Purinergic signalling and brain development. Semin Cell Dev Biol 95:34–41. https://doi.org/10.1016/J.SEMCDB.2018.12.001
Article CAS PubMed Google Scholar
M Puderbaugh and PD Emmady (2023) Neuroplasticity. Treasure Island FL StatPearls.
M Jiang, SE Jang, L Zeng (2023) ‘The effects of extrinsic and intrinsic factors on neurogenesis’ Cells 12(9) https://doi.org/10.3390/CELLS12091285.
Cramer SC et al (2011) Harnessing neuroplasticity for clinical applications. Brain 134(6):1591–1609. https://doi.org/10.1093/BRAIN/AWR039
Article PubMed PubMed Central Google Scholar
Castrén E, Antila H (2017) Neuronal plasticity and neurotrophic factors in drug responses. Mol Psychiatry 22(8):1085–1095. https://doi.org/10.1038/MP.2017.61
Article PubMed PubMed Central Google Scholar
Castrén E, Hen R (2013) Neuronal plasticity and antidepressant actions. Trends Neurosci 36(5):259–267. https://doi.org/10.1016/J.TINS.2012.12.010
Article PubMed PubMed Central Google Scholar
Gallagher A, Bulteau C, Cohen D, Michaud JL (2019). Neurocognitive Development: Normative Development, vol 173, no 1. Elsevier, pp 2–513
Singh S, Mishra A, Srivastava N, Shukla S (2017) MK-801 (dizocilpine) regulates multiple steps of adult hippocampal neurogenesis and alters psychological symptoms via Wnt/β-catenin signaling in parkinsonian rats. ACS Chem Neurosci 8(3):592–605. https://doi.org/10.1021/ACSCHEMNEURO.6B00354
Article CAS PubMed Google Scholar
Altman J, Das GD (1965) Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Compar Neurol 124(3):319–335. https://doi.org/10.1002/CNE.901240303
Mokhemer SA, Desouky MK, Abdelghany AK, Ibrahim MFG (2023) Stem cells therapeutic effect in a reserpine-induced fibromyalgia rat model: a possible NLRP3 inflammasome modulation with neurogenesis promotion in the cerebral cortex. Life Sci 325:121784. https://doi.org/10.1016/J.LFS.2023.121784
Article CAS PubMed Google Scholar
EP Bless et al. (2016) ‘Adult neurogenesis in the female mouse hypothalamus: estradiol and high-fat diet alter the generation of newborn neurons expressing estrogen receptor α’, eNeuro, 3(4) https://doi.org/10.1523/ENEURO.0027-16.2016
Bernier PJ, Bédard A, Vinet J, Lévesque M, Parent A (2002) Newly generated neurons in the amygdala and adjoining cortex of adult primates. Proc Natl Acad Sci U S A 99(17):11464–11469. https://doi.org/10.1073/PNAS.172403999
Article ADS CAS PubMed PubMed Central Google Scholar
Bartkowska K, Turlejski K, Koguc-Sobolewska P, Djavadian R (2023) Adult neurogenesis in the mammalian hypothalamus: impact of newly generated neurons on hypothalamic function. Neuroscience 515:83–92. https://doi.org/10.1016/J.NEUROSCIENCE.2023.02.012
Article CAS PubMed Google Scholar
Ribeiro FF, Xapelli S (2021) An overview of adult neurogenesis. Adv Exp Med Biol 1331:77–94. https://doi.org/10.1007/978-3-030-74046-7_7
Article CAS PubMed Google Scholar
Denoth-Lippuner A, Jessberger S (2021) Formation and integration of new neurons in the adult hippocampus. Nat Rev Neurosci 22(4):223–236. https://doi.org/10.1038/s41583-021-00433-z
Article CAS PubMed Google Scholar
Gonçalves JT, Schafer ST, Gage FH (2016) Adult neurogenesis in the hippocampus: from stem cells to behavior. Cell 167(4):897–914. https://doi.org/10.1016/J.CELL.2016.10.021
Waites CL, Craig AM, Garner CC (2005) Mechanisms of vertebrate synaptogenesis. Annu Rev Neurosci 28:251–274. https://doi.org/10.1146/ANNUREV.NEURO.27.070203.144336
Article CAS PubMed Google Scholar
KM Harris and SB Kater (1994) ‘Dendritic spines: cellular specializations imparting both stability and flexibility to synaptic function’ Annu Rev Neurosci 17 341–371 https://doi.org/10.1146/ANNUREV.NE.17.030194.002013.
Lai KO, Ip NY (2013) Structural plasticity of dendritic spines: the underlying mechanisms and its dysregulation in brain disorders. Biochim Biophys Acta Mol Basis Dis 1832(12):2257–2263. https://doi.org/10.1016/J.BBADIS.2013.08.012
Woolfrey KM, Dell’Acqua ML (2015) Coordination of protein phosphorylation and dephosphorylation in synaptic plasticity. J Biol Chem 290(48):28604–28612. https://doi.org/10.1074/JBC.R115.657262
Article CAS PubMed PubMed Central Google Scholar
Citri A, Malenka RC (2008) Synaptic Plasticity: Multiple Forms, Functions, and Mechanisms. Neuropsychopharmacology 33(1):18–41. https://doi.org/10.1038/sj.npp.1301559
M Fumagalli, D Lecca, MP Abbracchio, S Ceruti (2017) ‘Pathophysiological role of purines and pyrimidines in neurodevelopment: unveiling new pharmacological approaches to congenital brain diseases’ Front Pharmacol 8 https://doi.org/10.3389/FPHAR.2017.00941.
DE Ribeiro, T Glaser, A Oliveira-Giacomelli and H Ulrich (2019) ‘Purinergic receptors in neurogenic processes’ Brain Res Bull 151 3–11 https://doi.org/10.1016/J.BRAINRESBULL.2018.12.013.
D Lecca, M Fumagalli, S Ceruti and MP Abbracchio (2016) ‘Intertwining extracellular nucleotides and their receptors with Ca2+ in determining adult neural stem cell survival, proliferation and final fate’ Philos Trans R Soc Lond B Biol Sci 371(1700) https://doi.org/10.1098/RSTB.2015.0433.
EK Jackson, D Cheng, TC Jackson, JD Verrier and DG Gillespie (2013) ‘Extracellular guanosine regulates extracellular adenosine levels’, Am J Physiol Cell Physiol 304(5) https://doi.org/10.1152/AJPCELL.00212.2012.
Burnstock G (2020) Introduction to purinergic signalling in the brain. Adv Exp Med Biol 1202:1–12. https://doi.org/10.1007/978-3-030-30651-9_1/COVER
Article CAS PubMed Google Scholar
Burnstock G (2011) Introductory overview of purinergic signalling. Front Biosci Elite 3(3):896–900. https://doi.org/10.2741/E298/PDF
Santos TG, Souza DO, Tasca CI (2006) GTP uptake into rat brain synaptic vesicles. Brain Res 1070(1):71–76. https://doi.org/10.1016/J.BRAINRES.2005.10.099
Article CAS PubMed Google Scholar
Schmidt AP, Lara DR, Souza DO (2007) Proposal of a guanine-based purinergic system in the mammalian central nervous system. Pharmacol Ther 116(3):401–416. https://doi.org/10.1016/J.PHARMTHERA.2007.07.004
Article CAS PubMed Google Scholar
Wong PC, Henderson JF (1972) Purine ribonucleotide biosynthesis, interconversion and catabolism in mouse brain in vitro. Biochem J 129(5):1085–1094. https://doi.org/10.1042/BJ1291085
Article CAS PubMed PubMed Central Google Scholar
Burnstock G (2007) Purine and pyrimidine receptors. Cell Mol Life Sci 64(12):1471–1483. https://doi.org/10.1007/S00018-007-6497-0
Article CAS PubMed Google Scholar
G Burnstock (2017) ‘Purinergic signalling: therapeutic developments’, Front Pharmacol 8 https://doi.org/10.3389/FPHAR.2017.00661.
Burnstock G (2013) Introduction to purinergic signalling in the brain. Adv Exp Med Biol 986:1–12. https://doi.org/10.1007/978-94-007-4719-7_1
Article CAS PubMed Google Scholar
Dal-Cim T et al (2013) Guanosine controls inflammatory pathways to afford neuroprotection of hippocampal slices under oxygen and glucose deprivation conditions. J Neurochem 126(4):437–450. https://doi.org/10.1111/JNC.12324
Article CAS PubMed Google Scholar
El-Shamarka MES, El-Sahar AE, Saad MA, Assaf N, Sayed RH (2022) Inosine attenuates 3-nitropropionic acid-induced Huntington’s disease-like symptoms in rats via the activation of the A2AR/BDNF/TrKB/ERK/CREB signaling pathway. Life Sci 300:120569. https://doi.org/10.1016/J.LFS.2022.120569
Article CAS PubMed Google Scholar
Frinchi M et al (2020) Guanosine-mediated anxiolytic-like effect: interplay with adenosine a1 and a2a receptors. Int J Mol Sci 21(23):1–15. https://doi.org/10.3390/IJMS21239281
IS Kim and EK Jo (2022) Inosine: a bioactive metabolite with multimodal actions in human diseases Front Pharmacol 13 https://doi.org/10.3389/FPHAR.2022.1043970.
Palmer TM, Stiles GL (1995) Adenosine receptors. Neuropharmacology 34(7):683–694. https://doi.org/10.1016/0028-3908(95)00044-7
Article CAS PubMed Google Scholar
Cunha RA (2016) How does adenosine control neuronal dysfunction and neurodegeneration? J Neurochem 139(6):1019–1055. https://doi.org/10.1111/JNC.13724
Article CAS PubMed Google Scholar
Matos M et al (2012) Adenosine A2A receptors modulate glutamate uptake in cultured astrocytes and gliosomes. Glia 60(5):702–716. https://doi.org/10.1002/GLIA.22290
Matos M, Augusto E, MacHado NJ, Dos Santos-Rodrigues A, Cunha RA, Agostinho P (2012) Astrocytic adenosine A2A receptors control the amyloid-β peptide-induced decrease of glutamate uptake. J Alzheim Dis 31(3):555–567. https://doi.org/10.3233/JAD-2012-120469
Comments (0)