Gustavsson A, Norton N, Fast T, Frölich L, Georges J, Holzapfel D, et al. Global estimates on the number of persons across the Alzheimer’s disease continuum. Alzheimer’s & Dementia. 2023;19:658–70. https://doi.org/10.1002/alz.12694.
World Alzheimer Report; 2023. https://www.alzint.org/what-we-do/research/world-alzheimer-report/
Soto C, Pritzkow S. Protein misfolding, aggregation, and conformational strains in neurodegenerative diseases. Nat Neurosci. 2018;21:1332–40.
Article CAS PubMed PubMed Central Google Scholar
Gan L, Cookson MR, Petrucelli L, La Spada AR. Converging pathways in neurodegeneration, from genetics to mechanisms. Nat Neurosci. 2018;21:1300–9.
Article CAS PubMed PubMed Central Google Scholar
LaFerla FM, Green KN, Oddo S. Intracellular amyloid-β in Alzheimer’s disease. Nat Rev Neurosci. 2007;8:499–509.
Article CAS PubMed Google Scholar
Shi Y, Zhang W, Yang Y, Murzin AG, Falcon B, Kotecha A, et al. Structure-based classification of tauopathies. Nature. 2021;598:359–63.
Article ADS CAS PubMed PubMed Central Google Scholar
Fujiwara H, Hasegawa M, Dohmae N, Kawashima A, Masliah E, Goldberg MS, et al. α-Synuclein is phosphorylated in synucleinopathy lesions. Nat Cell Biol. 2002;4:160–4.
Article CAS PubMed Google Scholar
Silveira JR, Raymond GJ, Hughson AG, Race RE, Sim VL, Hayes SF, et al. The most infectious prion protein particles. Nature. 2005;437:257–61.
Article ADS CAS PubMed PubMed Central Google Scholar
Sreedharan J, Blair IP, Tripathi VB, Hu X, Vance C, Rogelj B, et al. TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science. 2008;319:1668–72. https://doi.org/10.1126/science.1154584.
Article ADS CAS PubMed PubMed Central Google Scholar
Iadanza MG, Jackson MP, Hewitt EW, Ranson NA, Radford SE. A new era for understanding amyloid structures and disease. Nat Rev Mol Cell Biol. 2018;19:755–73.
Article CAS PubMed Google Scholar
Bemporad F, Chiti F. Protein misfolded oligomers: experimental approaches, mechanism of formation, and structure-toxicity relationships. Chem Biol. 2012;19:315–27. https://doi.org/10.1016/j.chembiol.2012.02.003.
Article CAS PubMed Google Scholar
Serpell LC, Berriman J, Jakes R, Goedert M, Crowther RA. Fiber diffraction of synthetic α-synuclein filaments shows amyloid-like cross-β conformation. Proc Natl Acad Sci USA. 2000;97:4897–902. https://doi.org/10.1073/pnas.97.9.4897.
Article ADS CAS PubMed PubMed Central Google Scholar
Koike H, Iguchi Y, Sahashi K, Katsuno M. Significance of oligomeric and fibrillar species in amyloidosis: insights into pathophysiology and treatment. Molecules. 2021;26:5091.
Article CAS PubMed PubMed Central Google Scholar
Rajamohamedsait HB, Sigurdsson EM. Histological Staining of amyloid and pre-amyloid peptides and proteins in mouse tissue. Methods Mol Biol. 2012;849:411–24. https://doi.org/10.1007/978-1-61779-551-0_28.
Article CAS PubMed Google Scholar
Villemagne VL, Doré V, Burnham SC, Masters CL, Rowe CC. Imaging tau and amyloid-β proteinopathies in Alzheimer disease and other conditions. Nat Rev Neurol. 2018;14:225–36.
Article CAS PubMed Google Scholar
Nabers A, Perna L, Lange J, Mons U, Schartner J, Güldenhaupt J, et al. Amyloid blood biomarker detects Alzheimer’s disease. EMBO Mol Med. 2018;10: e8763. https://doi.org/10.15252/emmm.201708763.
Article CAS PubMed PubMed Central Google Scholar
Simonsen AH, Herukka S-K, Andreasen N, Baldeiras I, Bjerke M, Blennow K, et al. Recommendations for CSF AD biomarkers in the diagnostic evaluation of dementia. Alzheimer’s & Dementia. 2017;13:274–84. https://doi.org/10.1016/j.jalz.2016.09.008.
Alzghool OM, Dongen G, Giessen E, Schoonmade L, Beaino W. α-Synuclein radiotracer development and in vivo imaging: recent advancements and new perspectives. Mov Disord. 2022;37:936–48. https://doi.org/10.1002/mds.28984.
Article PubMed PubMed Central Google Scholar
Vaneyck J, Yousif TA, Segers-Nolten I, Blum C, Claessens MMAE. Quantitative seed amplification assay: a proof-of-principle study. J Phys Chem B. 2023;127:1735–43. https://doi.org/10.1021/acs.jpcb.2c08326.
Article CAS PubMed PubMed Central Google Scholar
Siderowf A, Concha-Marambio L, Lafontant D-E, Farris CM, Ma Y, Urenia PA, et al. Assessment of heterogeneity among participants in the Parkinson’s Progression Markers Initiative cohort using α-synuclein seed amplification: a cross-sectional study. The Lancet Neurology. 2023;22:407–17.
Article CAS PubMed PubMed Central Google Scholar
McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR, Kawas CH, et al. The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s & Dementia. 2011;7:263–9. https://doi.org/10.1016/j.jalz.2011.03.005.
Jack CR Jr, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, et al. NIA-AA research framework: toward a biological definition of Alzheimer’s disease. Alzheimer’s & Dementia. 2018;14:535–62. https://doi.org/10.1016/j.jalz.2018.02.018.
Harada R, Okamura N, Furumoto S, Yanai K. Imaging protein misfolding in the brain using β-sheet ligands. Front Neurosci. 2018;12:585. https://doi.org/10.3389/fnins.2018.00585/full.
Article PubMed PubMed Central Google Scholar
Leuzy A, Chiotis K, Lemoine L, Gillberg P-G, Almkvist O, Rodriguez-Vieitez E, et al. Tau PET imaging in neurodegenerative tauopathies—still a challenge. Mol Psychiatry. 2019;24:1112–34.
Article CAS PubMed PubMed Central Google Scholar
Knight AC, Morrone CD, Varlow C, Yu WH, McQuade P, Vasdev N. Head-to-head comparison of Tau-PET radioligands for imaging TDP-43 in post-mortem ALS brain. Mol Imag Biol. 2023;25:513–27. https://doi.org/10.1007/s11307-022-01779-1.
Dahal E, Ghammraoui B, Ye M, Smith JC, Badano A. Label-free X-ray estimation of brain amyloid burden. Sci Rep. 2020;10:20505.
Article CAS PubMed PubMed Central Google Scholar
Dahal E, Ghammraoui B, Badano A. Feasibility of a label-free X-ray method to estimate brain amyloid load in small animals. J Neurosci Methods. 2020;343: 108822.
Article CAS PubMed Google Scholar
Ghammraoui B, Badano A. Identification of amyloid plaques in the brain using an x-ray photon-counting strip detector. PLoS ONE. 2020;15: e0228720. https://doi.org/10.1371/journal.pone.0228720.
Article CAS PubMed PubMed Central Google Scholar
Breedlove S, Crentsil J, Dahal E, Badano A. Small-angle X-ray scattering characterization of a β-amyloid model in phantoms. BMC Res Notes. 2020;13:128. https://doi.org/10.1186/s13104-020-04969-8.
Article CAS PubMed PubMed Central Google Scholar
Dahal E, Ghammraoui B, Badano A. Characterization of materials embedded in thick objects using spectral small-angle x-ray scattering. J Phys D Appl Phys. 2020;53: 245302. https://doi.org/10.1088/1361-6463/ab8248.
Article ADS CAS Google Scholar
Choi M, Dahal E, Badano A. Feasibility of imaging amyloid in the brain using small-angle x-ray scattering. Biomed Phys Eng Express. 2021;7: 015008. https://doi.org/10.1088/2057-1976/ab501c.
Ke PC, Zhou R, Serpell LC, Riek R, Knowles TPJ, Lashuel HA, et al. Half a century of amyloids: past, present and future. Chem Soc Rev. 2020;49:5473–509.
Article CAS PubMed PubMed Central Google Scholar
Olzscha H, Schermann SM, Woerner AC, Pinkert S, Hecht MH, Tartaglia GG, et al. Amyloid-like aggregates sequester numerous metastable proteins with essential cellular functions. Cell. 2011;144:67–78.
Article CAS PubMed Google Scholar
Goldschmidt L, Teng PK, Riek R, Eisenberg D. Identifying the amylome, proteins capable of forming amyloid-like fibrils. Proc Natl Acad Sci USA. 2010;107:3487–92. https://doi.org/10.1073/pnas.0915166107.
Comments (0)