Cox, D. B. T., Platt, R. J. & Zhang, F. Therapeutic genome editing: prospects and challenges. Nat. Med. 21, 121–131 (2015).
Article CAS PubMed PubMed Central Google Scholar
Craig Venter, J. et al. The sequence of the human genome. Science 291, 1304–1351 (2001).
Metzker, M. L. Sequencing technologies - the next generation. Nat. Rev. Genet. 11, 31–46 (2010).
Article CAS PubMed Google Scholar
Valouev, A. et al. A high-resolution, nucleosome position map of C. elegans reveals a lack of universal sequence-dictated positioning. Genome Res. 18, 1051–1063 (2008).
Article CAS PubMed PubMed Central Google Scholar
Margulies, M. et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature 437, 376–380 (2005).
Article ADS CAS PubMed PubMed Central Google Scholar
Doudna, J. A. The promise and challenge of therapeutic genome editing. Nature 578, 229–236 (2020).
Article ADS CAS PubMed PubMed Central Google Scholar
Chen, P. J. & Liu, D. R. Prime editing for precise and highly versatile genome manipulation. Nat. Rev. Genet. 24, 161–177 (2023).
Article CAS PubMed Google Scholar
Jackson, D. A., Symons, R. H. & Berg, P. Biochemical method for inserting new genetic information into DNA of Simian Virus 40: circular SV40 DNA molecules containing lambda phage genes and the galactose operon of Escherichia coli. Proc. Natl. Acad. Sci. USA 69, 2904–2909 (1972).
Article ADS CAS PubMed PubMed Central Google Scholar
Cohen, S. N., Chang, A. C. Y., Boyer, H. W. & Helling, R. B. Construction of biologically functional bacterial plasmids in vitro. Proc. Natl. Acad. Sci. USA 70, 3240–3244 (1973).
Article ADS CAS PubMed PubMed Central Google Scholar
Berg, P. et al. Letter: potential biohazards of recombinant DNA molecules. Science 185, 303 (1974).
Article ADS CAS PubMed Google Scholar
Yang, X. W., Model, P. & Heintz, N. Homologous recombination based modification in Escherichia coli and germline transmission in transgenic mice of a bacterial artificial chromosome. Nat. Biotechnol. 15, 859–865 (1997).
Article CAS PubMed Google Scholar
Muyrers, J. P. P., Zhang, Y. & Stewart, A. F. Techniques: recombinogenic engineering—new options for cloning and manipulating DNA. Trends Biochem. Sci. 26, 325–331 (2001).
Article CAS PubMed Google Scholar
Baudin, A., Ozier-kalogeropoulos, O., Denouel, A., Lacroute, F. & Cullin, C. A simple and efficient method for direct gene deletion in Saccharomyces cerevisiae. Nucleic Acids Res. 21, 3329–3330 (1993).
Article CAS PubMed PubMed Central Google Scholar
Pu, W. et al. Genetic targeting of organ-specific blood vessels. Circ. Res. 123, 86–99 (2018).
Article CAS PubMed PubMed Central Google Scholar
Branda, C. S. & Dymecki, S. M. Talking about a revolution: the impact of site-specific recombinases on genetic analyses in mice. Dev. Cell 6, 7–28 (2004).
Article CAS PubMed Google Scholar
Gilbertson, L. Cre-lox recombination: Cre-ative tools for plant biotechnology. Trends Biotechnol. 21, 550–555 (2003).
Article CAS PubMed Google Scholar
Carroll, D. Genome engineering with zinc-finger nucleases. Genetics 188, 773–782 (2011).
Article CAS PubMed PubMed Central Google Scholar
Urnov, F. D., Rebar, E. J., Holmes, M. C., Zhang, H. S. & Gregory, P. D. Genome editing with engineered zinc finger nucleases. Nat. Rev. Genet. 11, 636–646 (2010).
Article CAS PubMed Google Scholar
Rahman, S. H., Maeder, M. L., Joung, J. K. & Cathomen, T. Zinc-finger nucleases for somatic gene therapy: the next frontier. Hum. Gene Ther. 22, 925–933 (2011).
Article CAS PubMed PubMed Central Google Scholar
Joung, J. K. & Sander, J. D. TALENs: a widely applicable technology for targeted genome editing. Nat. Rev. Mol. Cell Biol. 14, 49–55 (2013).
Article CAS PubMed Google Scholar
Chen, K. & Gao, C. TALENs: customizable molecular DNA scissors for genome engineering of plants. J. Genet. Genom. 40, 271–279 (2013).
Sun, N. & Zhao, H. Transcription activator-like effector nucleases (TALENs): a highly efficient and versatile tool for genome editing. Biotechnol. Bioeng. 110, 1811–1821 (2013).
Article CAS PubMed Google Scholar
Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).
Article ADS CAS PubMed PubMed Central Google Scholar
Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).
Article ADS CAS PubMed PubMed Central Google Scholar
Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420–424 (2016).
Article ADS CAS PubMed PubMed Central Google Scholar
Gaudelli, N. M. et al. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature 551, 464–471 (2017).
Article ADS CAS PubMed PubMed Central Google Scholar
Anzalone, A. V. et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149–157 (2019).
Article ADS CAS PubMed PubMed Central Google Scholar
Doudna, J. A. & Charpentier, E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346, 1258096 (2014).
Dussoix, D. & Arber, W. Host specificity of DNA produced by Escherichia coli. II. Control over acceptance of DNA from infecting phage lambda. J. Mol. Biol. 5, 37–49 (1962).
Article CAS PubMed Google Scholar
Arber, W. & Dussoix, D. Host specificity of DNA produced by Escherichia coli. I. Host controlled modification of bacteriophage lambda. J. Mol. Biol. 5, 18–36 (1962).
Article CAS PubMed Google Scholar
Loenen, W. A. M., Dryden, D. T. F., Raleigh, E. A., Wilson, G. G. & Murrayy, N. E. Highlights of the DNA cutters: a short history of the restriction enzymes. Nucleic Acids Res. 42, 3–19 (2014).
Article CAS PubMed Google Scholar
Morrow, J. F. & Berg, P. Cleavage of Simian virus 40 DNA at a unique site by a bacterial restriction enzyme. Proc. Natl. Acad. Sci. USA 69, 3365–3369 (1972).
Article ADS CAS PubMed PubMed Central Google Scholar
Sternberg, N. & Hamilton, D. Bacteriophage P1 site-specific recombination. I. Recombination between loxP sites. J. Mol. Biol. 150, 467–486 (1981).
Article CAS PubMed Google Scholar
Broach, J. R., Guarascio, V. R. & Jayaram, M. Recombination within the yeast plasmid 2mu circle is site-specific. Cell 29, 227–234 (1982).
Article CAS PubMed Google Scholar
Hoess, R. H., Ziese, M. & Sternberg, N. P1 site-specific recombination: nucleotide sequence of the recombining sites. Proc. Natl. Acad. Sci. USA 79, 3398–3402 (1982).
Comments (0)