Targeting the key players of phenotypic plasticity in cancer cells by phytochemicals

Stewart, B. W., Bray, F., Forman, D., Ohgaki, H., Straif, K., Ullrich, A., et al. (2016). Cancer prevention as part of precision medicine: 'Plenty to be done' Carcinogenesis, 37(1), 2–9.

Article  CAS  PubMed  Google Scholar 

Hanahan, D. (2022). Hallmarks of cancer: New dimensions. Cancer Discovery, 12(1), 31–46.

Article  CAS  PubMed  Google Scholar 

Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: The next generation. Cell, 144(5), 646–674.

Article  CAS  PubMed  Google Scholar 

Kalluri, R., & Weinberg, R. A. (2009). The basics of epithelial-mesenchymal transition. The Journal of Clinical Investigation, 119(6), 1420–1428.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ribatti, D., Tamma, R., & Annese, T. (2020). Epithelial-mesenchymal transition in cancer: A historical overview. Translational Oncology, 13(6), 100773.

Article  PubMed  PubMed Central  Google Scholar 

Cadoná, F. C., Dantas, R. F., de Mello, G. H., & Silva-Jr, F. P. (2022). Natural products targeting into cancer hallmarks: An update on caffeine, theobromine, and (+)-catechin. Critical Reviews in Food Science and Nutrition, 62(26), 7222–7241.

Article  PubMed  Google Scholar 

Demain, A. L., & Vaishnav, P. (2011). Natural products for cancer chemotherapy. Microbial Biotechnology, 4(6), 687–699. https://doi.org/10.1111/j.1751-7915.2010.00221.x

Article  PubMed  PubMed Central  Google Scholar 

Huang, M., Lu, J.-J., & Ding, J. (2021). Natural products in cancer therapy: Past, present and future. Natural Products and Bioprospecting, 11(1), 5–13.

Article  PubMed  PubMed Central  Google Scholar 

Newman, D. J., & Cragg, G. M. (2020). Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. Journal of Natural Products, 83(3), 770–803. https://doi.org/10.1021/acs.jnatprod.9b01285

Article  CAS  PubMed  Google Scholar 

Fakhri, S., Zachariah Moradi, S., DeLiberto, L. K., & Bishayee, A. (2022). Cellular senescence signaling in cancer: A novel therapeutic target to combat human malignancies. Biochemical Pharmacology, 199, 114989. https://doi.org/10.1016/j.bcp.2022.114989

Article  CAS  PubMed  Google Scholar 

Ang, H. L., Mohan, C. D., Shanmugam, M. K., Leong, H. C., Makvandi, P., Rangappa, K. S., et al. (2023). Mechanism of epithelial-mesenchymal transition in cancer and its regulation by natural compounds. Medicinal Research Reviews, 43(4), 1141–1200.

Article  CAS  PubMed  Google Scholar 

Das, B., Sarkar, N., Bishayee, A., & Sinha, D. (2019). Dietary phytochemicals in the regulation of epithelial to mesenchymal transition and associated enzymes: A promising anticancer therapeutic approach. In Semin Cancer Biol (Vol. 56, pp. 196–218): Elsevier

Avila-Carrasco, L., Majano, P., Sánchez-Toméro, J. A., Selgas, R., López-Cabrera, M., Aguilera, A., et al. (2019). Natural plants compounds as modulators of epithelial-to-mesenchymal transition. Frontiers in Pharmacology, 10, 715.

Article  CAS  PubMed  PubMed Central  Google Scholar 

More, H. The immortality of the soul, so farre as it is demonstrable from the knowledge of nature and the light of reason. Eebo Editions, Proquest.

Cudworth, R. (1678). The true intellectual system of the universe: The first part; wherein, all the reason and philosophy of atheism is is confuted; and its impossibility demonstrated. Richard Royston. https://doi.org/10.1037/14226-000

Darwin, C. (2004). On the origin of species, 1859. Routledge.

Book  Google Scholar 

Baldwin, J, M. (1896). Physical and social heredity. American Naturalist, 422–428.

Woltereck, R. (1909). Weitere experimentelle Untersuchungen uber Artveranderung, speziell uberdas Wesen quantitativer Artunterschyiede bei Daphniden. Verhandlungen der Deutschen Zoologischen Gesellschaft, 1909, 110–172.

Google Scholar 

Poulton, E. B. (1892). XIX. Further experiments upon the colour‐relation between certain lepidopterous larvœ, pupœ, cocoons, and imagines and their surroundings. Transactions of the Royal Entomological Society of London, 40(4), 293–487.

Article  Google Scholar 

Levis, N. A., & Pfennig, D. W. (2019). Phenotypic plasticity, canalization, and the origins of novelty: evidence and mechanisms from amphibians. In Seminars in cell & developmental biology (Vol. 88, pp. 80–90). Academic Press. https://doi.org/10.1016/j.semcdb.2018.01.012

Johannsen, W. (1911). The genotype conception of heredity. The American Naturalist, 45(531), 129–159.

Article  Google Scholar 

Schmalhausen, I. I. (1949). Factors of evolution: The theory of stabilizing selection. Blakiston.

Waddington, C. H. (1975). The evolution of an evolutionist. Edinburgh: Edinburgh University Press.

Google Scholar 

Mayr, E. (1963). Animal species and evolution. Cambridge, MA: Harvard University Press.

Bradshaw, A. D. (1965). Evolutionary significance of phenotypic plasticity in plants. Advances in Genetics, 13, 115–155.

Article  Google Scholar 

Gilbert, S. F. (2005). Mechanisms for the environmental regulation of gene expression: Ecological aspects of animal development. Journal of Biosciences, 30, 65–74.

Article  CAS  PubMed  Google Scholar 

Clark, M. S. (2020). Molecular mechanisms of biomineralization in marine invertebrates. Journal of Experimental Biology, 223(11), jeb206961.

Article  PubMed  PubMed Central  Google Scholar 

Kucharski, R., Maleszka, J., Foret, S., & Maleszka, R. (2008). Nutritional control of reproductive status in honeybees via DNA methylation. Science, 319(5871), 1827–1830.

Article  CAS  PubMed  Google Scholar 

Gupta, P. B., Pastushenko, I., Skibinski, A., Blanpain, C., & Kuperwasser, C. (2019). Phenotypic plasticity: Driver of cancer initiation, progression, and therapy resistance. Cell Stem Cell, 24(1), 65–78.

Article  CAS  PubMed  Google Scholar 

Pastushenko, I., & Blanpain, C. (2019). EMT transition states during tumor progression and metastasis. Trends in Cell Biology, 29(3), 212–226.

Article  CAS  PubMed  Google Scholar 

Javaid, S., Zhang, J., Anderssen, E., Black, J. C., Wittner, B. S., Tajima, K., et al. (2013). Dynamic chromatin modification sustains epithelial-mesenchymal transition following inducible expression of Snail-1. Cell Reports, 5(6), 1679–1689.

Article  CAS  PubMed  Google Scholar 

Marcucci, F., Stassi, G., & De Maria, R. (2016). Epithelial–mesenchymal transition: A new target in anticancer drug discovery. Nature Reviews Drug Discovery, 15(5), 311–325.

Article  CAS  PubMed  Google Scholar 

Ungefroren, H., Thürling, I., Färber, B., Kowalke, T., Fischer, T., De Assis, L. V. M., et al. (2022). The quasimesenchymal pancreatic ductal epithelial cell line PANC-1-A useful model to study clonal heterogeneity and EMT subtype shifting. Cancers (Basel), 14(9), https://doi.org/10.3390/cancers14092057

Dongre, A., & Weinberg, R. A. (2019). New insights into the mechanisms of epithelial–mesenchymal transition and implications for cancer. Nature Reviews Molecular Cell Biology, 20(2), 69–84.

Article  CAS  PubMed  Google Scholar 

Esquer, H., Zhou, Q., Nemkov, T., Abraham, A. D., Rinaldetti, S., Chen, Y. C., et al. (2021). Isolating and targeting the real-time plasticity and malignant properties of epithelial-mesenchymal transition in cancer. Oncogene, 40(16), 2884–2897. https://doi.org/10.1038/s41388-021-01728-2

Article  CAS  PubMed  PubMed Central  Google Scholar 

Muz, B., de la Puente, P., Azab, F., & Azab, A. K. (2015). The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia, 3, 83.

Article  PubMed  PubMed Central  Google Scholar 

Michealraj, K. A., Kumar, S. A., Kim, L. J., Cavalli, F. M., Przelicki, D., Wojcik, J. B., et al. (2020). Metabolic regulation of the epigenome drives lethal infantile ependymoma. Cell, 181(6), 1329–1345. e1324

Li, L., & Hanahan, D. (2013). Hijacking the neuronal NMDAR signaling circuit to promote tumor growth and invasion. Cell, 153(1), 86–100.

Article  CAS  PubMed  Google Scholar 

Mohammadi, H., & Sahai, E. (2018). Mechanisms and impact of altered tumour mechanics. Nature Cell Biology, 20(7), 766–774.

Article  CAS  PubMed  Google Scholar 

Visvader, J. E. (2011). Cells of origin in cancer. Nature, 469(7330), 314–322.

Article  CAS  PubMed  Google Scholar 

Rycaj, K., & Tang, D. G. (2015). Cell-of-origin of cancer versus cancer stem cells: Assays and interpretations. Cancer Research, 75(19), 4003–4011.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ince, T. A., Richardson, A. L., Bell, G. W., Saitoh, M., Godar, S., Karnoub, A. E., et al. (2007). Transformation of different human breast epithelial cell types leads to distinct tumor phenotypes. Cancer Cell, 12(2), 160–170.

Article  CAS  Google Scholar 

Walcher, L., Kistenmacher, A. K., Suo, H., Kitte, R., Dluczek, S., Strauß, A., et al. (2020). Cancer stem cells-origins and biomarkers: Perspectives for targeted personalized therapies. Frontiers in Immunology, 11, 1280. https://doi.org/10.3389/fimmu.2020.01280

Article  CAS  PubMed  PubMed Central  Google Scholar 

Suraneni, M. V., & Badeaux, M. D. (2013). Tumor-initiating cells, cancer metastasis and therapeutic implications. In Madame Curie Bioscience Database [Internet]: Landes Bioscience.

Cermeño, E. A., & García, A. J. (2016). Tumor-initiating cells: Emerging biophysical methods of isolation. Current stem cell reports, 2, 21–32.

Article  PubMed  PubMed Central  Google Scholar 

Papaccio, F., Paino, F., Regad, T., Papaccio, G., Desiderio, V., & Tirino, V. (2017). Concise review: Cancer cells, cancer stem cells, and mesenchymal stem cells: Influence in cancer development. Stem Cells Translational Medicine, 6(12), 2115–2125. https://doi.org/10.1002/sctm.17-0138

Article 

Comments (0)

No login
gif