Stewart, B. W., Bray, F., Forman, D., Ohgaki, H., Straif, K., Ullrich, A., et al. (2016). Cancer prevention as part of precision medicine: 'Plenty to be done' Carcinogenesis, 37(1), 2–9.
Article CAS PubMed Google Scholar
Hanahan, D. (2022). Hallmarks of cancer: New dimensions. Cancer Discovery, 12(1), 31–46.
Article CAS PubMed Google Scholar
Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: The next generation. Cell, 144(5), 646–674.
Article CAS PubMed Google Scholar
Kalluri, R., & Weinberg, R. A. (2009). The basics of epithelial-mesenchymal transition. The Journal of Clinical Investigation, 119(6), 1420–1428.
Article CAS PubMed PubMed Central Google Scholar
Ribatti, D., Tamma, R., & Annese, T. (2020). Epithelial-mesenchymal transition in cancer: A historical overview. Translational Oncology, 13(6), 100773.
Article PubMed PubMed Central Google Scholar
Cadoná, F. C., Dantas, R. F., de Mello, G. H., & Silva-Jr, F. P. (2022). Natural products targeting into cancer hallmarks: An update on caffeine, theobromine, and (+)-catechin. Critical Reviews in Food Science and Nutrition, 62(26), 7222–7241.
Demain, A. L., & Vaishnav, P. (2011). Natural products for cancer chemotherapy. Microbial Biotechnology, 4(6), 687–699. https://doi.org/10.1111/j.1751-7915.2010.00221.x
Article PubMed PubMed Central Google Scholar
Huang, M., Lu, J.-J., & Ding, J. (2021). Natural products in cancer therapy: Past, present and future. Natural Products and Bioprospecting, 11(1), 5–13.
Article PubMed PubMed Central Google Scholar
Newman, D. J., & Cragg, G. M. (2020). Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. Journal of Natural Products, 83(3), 770–803. https://doi.org/10.1021/acs.jnatprod.9b01285
Article CAS PubMed Google Scholar
Fakhri, S., Zachariah Moradi, S., DeLiberto, L. K., & Bishayee, A. (2022). Cellular senescence signaling in cancer: A novel therapeutic target to combat human malignancies. Biochemical Pharmacology, 199, 114989. https://doi.org/10.1016/j.bcp.2022.114989
Article CAS PubMed Google Scholar
Ang, H. L., Mohan, C. D., Shanmugam, M. K., Leong, H. C., Makvandi, P., Rangappa, K. S., et al. (2023). Mechanism of epithelial-mesenchymal transition in cancer and its regulation by natural compounds. Medicinal Research Reviews, 43(4), 1141–1200.
Article CAS PubMed Google Scholar
Das, B., Sarkar, N., Bishayee, A., & Sinha, D. (2019). Dietary phytochemicals in the regulation of epithelial to mesenchymal transition and associated enzymes: A promising anticancer therapeutic approach. In Semin Cancer Biol (Vol. 56, pp. 196–218): Elsevier
Avila-Carrasco, L., Majano, P., Sánchez-Toméro, J. A., Selgas, R., López-Cabrera, M., Aguilera, A., et al. (2019). Natural plants compounds as modulators of epithelial-to-mesenchymal transition. Frontiers in Pharmacology, 10, 715.
Article CAS PubMed PubMed Central Google Scholar
More, H. The immortality of the soul, so farre as it is demonstrable from the knowledge of nature and the light of reason. Eebo Editions, Proquest.
Cudworth, R. (1678). The true intellectual system of the universe: The first part; wherein, all the reason and philosophy of atheism is is confuted; and its impossibility demonstrated. Richard Royston. https://doi.org/10.1037/14226-000
Darwin, C. (2004). On the origin of species, 1859. Routledge.
Baldwin, J, M. (1896). Physical and social heredity. American Naturalist, 422–428.
Woltereck, R. (1909). Weitere experimentelle Untersuchungen uber Artveranderung, speziell uberdas Wesen quantitativer Artunterschyiede bei Daphniden. Verhandlungen der Deutschen Zoologischen Gesellschaft, 1909, 110–172.
Poulton, E. B. (1892). XIX. Further experiments upon the colour‐relation between certain lepidopterous larvœ, pupœ, cocoons, and imagines and their surroundings. Transactions of the Royal Entomological Society of London, 40(4), 293–487.
Levis, N. A., & Pfennig, D. W. (2019). Phenotypic plasticity, canalization, and the origins of novelty: evidence and mechanisms from amphibians. In Seminars in cell & developmental biology (Vol. 88, pp. 80–90). Academic Press. https://doi.org/10.1016/j.semcdb.2018.01.012
Johannsen, W. (1911). The genotype conception of heredity. The American Naturalist, 45(531), 129–159.
Schmalhausen, I. I. (1949). Factors of evolution: The theory of stabilizing selection. Blakiston.
Waddington, C. H. (1975). The evolution of an evolutionist. Edinburgh: Edinburgh University Press.
Mayr, E. (1963). Animal species and evolution. Cambridge, MA: Harvard University Press.
Bradshaw, A. D. (1965). Evolutionary significance of phenotypic plasticity in plants. Advances in Genetics, 13, 115–155.
Gilbert, S. F. (2005). Mechanisms for the environmental regulation of gene expression: Ecological aspects of animal development. Journal of Biosciences, 30, 65–74.
Article CAS PubMed Google Scholar
Clark, M. S. (2020). Molecular mechanisms of biomineralization in marine invertebrates. Journal of Experimental Biology, 223(11), jeb206961.
Article PubMed PubMed Central Google Scholar
Kucharski, R., Maleszka, J., Foret, S., & Maleszka, R. (2008). Nutritional control of reproductive status in honeybees via DNA methylation. Science, 319(5871), 1827–1830.
Article CAS PubMed Google Scholar
Gupta, P. B., Pastushenko, I., Skibinski, A., Blanpain, C., & Kuperwasser, C. (2019). Phenotypic plasticity: Driver of cancer initiation, progression, and therapy resistance. Cell Stem Cell, 24(1), 65–78.
Article CAS PubMed Google Scholar
Pastushenko, I., & Blanpain, C. (2019). EMT transition states during tumor progression and metastasis. Trends in Cell Biology, 29(3), 212–226.
Article CAS PubMed Google Scholar
Javaid, S., Zhang, J., Anderssen, E., Black, J. C., Wittner, B. S., Tajima, K., et al. (2013). Dynamic chromatin modification sustains epithelial-mesenchymal transition following inducible expression of Snail-1. Cell Reports, 5(6), 1679–1689.
Article CAS PubMed Google Scholar
Marcucci, F., Stassi, G., & De Maria, R. (2016). Epithelial–mesenchymal transition: A new target in anticancer drug discovery. Nature Reviews Drug Discovery, 15(5), 311–325.
Article CAS PubMed Google Scholar
Ungefroren, H., Thürling, I., Färber, B., Kowalke, T., Fischer, T., De Assis, L. V. M., et al. (2022). The quasimesenchymal pancreatic ductal epithelial cell line PANC-1-A useful model to study clonal heterogeneity and EMT subtype shifting. Cancers (Basel), 14(9), https://doi.org/10.3390/cancers14092057
Dongre, A., & Weinberg, R. A. (2019). New insights into the mechanisms of epithelial–mesenchymal transition and implications for cancer. Nature Reviews Molecular Cell Biology, 20(2), 69–84.
Article CAS PubMed Google Scholar
Esquer, H., Zhou, Q., Nemkov, T., Abraham, A. D., Rinaldetti, S., Chen, Y. C., et al. (2021). Isolating and targeting the real-time plasticity and malignant properties of epithelial-mesenchymal transition in cancer. Oncogene, 40(16), 2884–2897. https://doi.org/10.1038/s41388-021-01728-2
Article CAS PubMed PubMed Central Google Scholar
Muz, B., de la Puente, P., Azab, F., & Azab, A. K. (2015). The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia, 3, 83.
Article PubMed PubMed Central Google Scholar
Michealraj, K. A., Kumar, S. A., Kim, L. J., Cavalli, F. M., Przelicki, D., Wojcik, J. B., et al. (2020). Metabolic regulation of the epigenome drives lethal infantile ependymoma. Cell, 181(6), 1329–1345. e1324
Li, L., & Hanahan, D. (2013). Hijacking the neuronal NMDAR signaling circuit to promote tumor growth and invasion. Cell, 153(1), 86–100.
Article CAS PubMed Google Scholar
Mohammadi, H., & Sahai, E. (2018). Mechanisms and impact of altered tumour mechanics. Nature Cell Biology, 20(7), 766–774.
Article CAS PubMed Google Scholar
Visvader, J. E. (2011). Cells of origin in cancer. Nature, 469(7330), 314–322.
Article CAS PubMed Google Scholar
Rycaj, K., & Tang, D. G. (2015). Cell-of-origin of cancer versus cancer stem cells: Assays and interpretations. Cancer Research, 75(19), 4003–4011.
Article CAS PubMed PubMed Central Google Scholar
Ince, T. A., Richardson, A. L., Bell, G. W., Saitoh, M., Godar, S., Karnoub, A. E., et al. (2007). Transformation of different human breast epithelial cell types leads to distinct tumor phenotypes. Cancer Cell, 12(2), 160–170.
Walcher, L., Kistenmacher, A. K., Suo, H., Kitte, R., Dluczek, S., Strauß, A., et al. (2020). Cancer stem cells-origins and biomarkers: Perspectives for targeted personalized therapies. Frontiers in Immunology, 11, 1280. https://doi.org/10.3389/fimmu.2020.01280
Article CAS PubMed PubMed Central Google Scholar
Suraneni, M. V., & Badeaux, M. D. (2013). Tumor-initiating cells, cancer metastasis and therapeutic implications. In Madame Curie Bioscience Database [Internet]: Landes Bioscience.
Cermeño, E. A., & García, A. J. (2016). Tumor-initiating cells: Emerging biophysical methods of isolation. Current stem cell reports, 2, 21–32.
Article PubMed PubMed Central Google Scholar
Papaccio, F., Paino, F., Regad, T., Papaccio, G., Desiderio, V., & Tirino, V. (2017). Concise review: Cancer cells, cancer stem cells, and mesenchymal stem cells: Influence in cancer development. Stem Cells Translational Medicine, 6(12), 2115–2125. https://doi.org/10.1002/sctm.17-0138
Comments (0)