Chen, L., Wang, C., Sun, H., Wang, J., Liang, Y., Wang, Y., & Wong, G. (2021). The bioinformatics toolbox for circRNA discovery and analysis. Briefings in Bioinformatics, 22(2), 1706–28.
Article PubMed CAS Google Scholar
Jeck, W. R., & Sharpless, N. E. (2014). Detecting and characterizing circular RNAs. Nature Biotechnology, 32(5), 453–461.
Article PubMed PubMed Central CAS Google Scholar
Chen, C. Y., & Sarnow, P. (1995). Initiation of protein synthesis by the eukaryotic translational apparatus on circular RNAs. Science, 268(5209), 415–417.
Article PubMed CAS Google Scholar
Sanger, H. L., et al. (1976). Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proceedings of the National Academy of Sciences of the United States of America, 73(11), 3852–3856.
Article PubMed PubMed Central CAS Google Scholar
Hsu, M. T., & Coca-Prados, M. (1979). Electron microscopic evidence for the circular form of RNA in the cytoplasm of eukaryotic cells. Nature, 280(5720), 339–340.
Article PubMed CAS Google Scholar
Patop, I. L., Wüst, S., & Kadener, S. (2019). Past, present, and future of circRNAs. The EMBO Journal, 38(16), e100836.
Article PubMed PubMed Central Google Scholar
Cocquerelle, C., et al. (1993). Mis-splicing yields circular RNA molecules. The FASEB Journal, 7(1), 155–160.
Article PubMed CAS Google Scholar
Salzman, J., Gawad, C., Wang, P. L., Lacayo, N., & Brown, P. O. (2012, Feb 1). Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PloS One, 7(2), e30733.
Article PubMed PubMed Central CAS Google Scholar
Memczak, S., Jens, M., Elefsinioti, A., Torti, F., Krueger, J., Rybak, A., Maier, L., Mackowiak, S. D., Gregersen, L. H., Munschauer, M., & Loewer, A. (2013, Mar 21). Circular RNAs are a large class of animal RNAs with regulatory potency. Nature, 495(7441), 333–338.
Article PubMed CAS Google Scholar
Ivanov, A., Memczak, S., Wyler, E., Torti, F., Porath, H. T., Orejuela, M. R., Piechotta, M., Levanon, E. Y., Landthaler, M., Dieterich, C., & Rajewsky, N. (2015, Jan 13). Analysis of intron sequences reveals hallmarks of circular RNA biogenesis in animals. Cell Reports, 10(2), 170–177.
Article PubMed CAS Google Scholar
Ye, C. Y., Chen, L., Liu, C., Zhu, Q. H., & Fan, L. (2015, Oct). Widespread noncoding circular RNA s in plants. New Phytologist, 208(1), 88–95.
Article PubMed CAS Google Scholar
Danan, M., Schwartz, S., Edelheit, S., & Sorek, R. (2012, Apr 1). Transcriptome-wide discovery of circular RNAs in Archaea. Nucleic Acids Research, 40(7), 3131–3142.
Article PubMed CAS Google Scholar
Ashwal-Fluss, R., Meyer, M., Pamudurti, N. R., Ivanov, A., Bartok, O., Hanan, M., Evantal, N., Memczak, S., Rajewsky, N., & Kadener, S. (2014, Oct 2). circRNA biogenesis competes with pre-mRNA splicing. Molecular Cell, 56(1), 55–66.
Article PubMed CAS Google Scholar
Li, X., Yang, L., & Chen, L. L. (2018). The biogenesis, functions, and challenges of circular RNAs. Molecular Cell, 71(3), 428–442.
Article PubMed CAS Google Scholar
Zhang, X. O., et al. (2014). Complementary sequence-mediated exon circularization. Cell, 159(1), 134–147.
Article PubMed CAS Google Scholar
Sha, J., et al. (2016). Curcumin induces G0/G1 arrest and apoptosis in hormone independent prostate cancer DU-145 cells by down regulating Notch signaling. Biomedicine & Pharmacotherapy, 84, 177–184.
Zhang, Y., et al. (2013). Circular intronic long noncoding RNAs. Molecular Cell, 51(6), 792–806.
Article PubMed CAS Google Scholar
Li, Z., Huang, C., Bao, C., Chen, L., Lin, M., Wang, X., Zhong, G., Yu, B., Hu, W., Dai, L., & Zhu, P. (2015). Exon-intron circular RNAs regulate transcription in the nucleus. Nature Structural & Molecular Biology, 22(3), 256–264.
Zhang, M., Bai, X., Zeng, X., Liu, J., Liu, F., & Zhang, Z. (2021, Dec). circRNA-miRNA-mRNA in breast cancer. Clinica Chimica Acta, 1(523), 120–130.
Mirzaei, S., Gholami, M. H., Hushmandi, K., Hashemi, F., Zabolian, A., Canadas, I., Zarrabi, A., Nabavi, N., Aref, A. R., Crea, F., & Wang, Y. (2022, Mar 2). The long and short non-coding RNAs modulating EZH2 signaling in cancer. Journal of Hematology & Oncology, 15(1), 18.
Mirzaei, S., Zarrabi, A., Hashemi, F., Zabolian, A., Saleki, H., Ranjbar, A., Saleh, S. H., Bagherian, M., & Sharifzadeh, S. O., Hushmandi K, Liskova A. (2021, Jul). Regulation of nuclear factor-KappaB (NF-κB) signaling pathway by non-coding RNAs in cancer: Inhibiting or promoting carcinogenesis? Cancer Letters, 1(509), 63–80.
Yuan, G., et al. (2021). Upregulated circRNA_102231 promotes gastric cancer progression and its clinical significance. Bioengineered, 12(1), 4936–4945.
Article PubMed PubMed Central CAS Google Scholar
Wong, C. H., et al. (2022). CircRTN4 promotes pancreatic cancer progression through a novel CircRNA-miRNA-lncRNA pathway and stabilizing epithelial-mesenchymal transition protein. Molecular Cancer, 21(1), 10.
Article PubMed PubMed Central CAS Google Scholar
Ju, Y., et al. (2021). CircRNA ANXA2 promotes lung cancer proliferation and metastasis by upregulating PDPK1 expression. Journal of Oncology, 2021, 4526609.
Article PubMed PubMed Central Google Scholar
Huang, X. Y., et al. (2020). Exosomal circRNA-100338 promotes hepatocellular carcinoma metastasis via enhancing invasiveness and angiogenesis. Journal of Experimental & Clinical Cancer Research, 39(1), 20.
Tan, L., Huang, Z., Chen, Z., Chen, S., Ye, Y., Chen, T., & Chen, Z. (2023, Jan 2). CircRNA_001895 promotes sunitinib resistance of renal cell carcinoma through regulation of apoptosis and DNA damage repair. Journal of Chemotherapy, 35(1), 11–18.
Article PubMed CAS Google Scholar
Xu, J., et al. (2020). CircRNA-SORE mediates sorafenib resistance in hepatocellular carcinoma by stabilizing YBX1. Signal Transduction and Targeted Therapy, 5(1), 298.
Article PubMed PubMed Central CAS Google Scholar
Wang, H., et al. (2019). CircRNA circ_0067934 overexpression correlates with poor prognosis and promotes thyroid carcinoma progression. Medical Science Monitor, 25, 1342–1349.
Article PubMed PubMed Central CAS Google Scholar
Zhang, S., et al. (2019). CircRNA_0000502 promotes hepatocellular carcinoma metastasis and inhibits apoptosis through targeting microRNA-124. Journal of BUON, 24(6), 2402–2410.
Peng, Q. S., et al. (2020). circRNA_0000140 suppresses oral squamous cell carcinoma growth and metastasis by targeting miR-31 to inhibit Hippo signaling pathway. Cell Death & Disease, 11(2), 112.
Zhang, X., et al. (2018). circRNA_104075 stimulates YAP-dependent tumorigenesis through the regulation of HNF4a and may serve as a diagnostic marker in hepatocellular carcinoma. Cell Death & Disease, 9(11), 1091.
Su, Y., et al. (2019). CircRNA Cdr1as functions as a competitive endogenous RNA to promote hepatocellular carcinoma progression. Aging (Albany NY), 11(19), 8183–8203.
Liu, Z., et al. (2019). CircRNA-5692 inhibits the progression of hepatocellular carcinoma by sponging miR-328-5p to enhance DAB2IP expression. Cell Death & Disease, 10(12), 900.
Li, C., et al. (2021). CircRNA NRIP1 promotes papillary thyroid carcinoma progression by sponging mir-195-5p and modulating the P38 MAPK and JAK/STAT pathways. Diagnostic Pathology, 16(1), 93.
Article PubMed PubMed Central CAS Google Scholar
Yang, L., Zou, X., Zou, J., & Zhang, G. (2021, May 1). Functions of circular RNAs in bladder, prostate and renal cell cancer. Molecular Medicine Reports, 23(5), 1–2.
Osca-Verdegal, R., et al. (2022). Use of circular RNAs in diagnosis, prognosis and therapeutics of renal cell carcinoma. Frontiers in Cell and Development Biology, 10, 879814.
Cai, Z., & Li, H. (2020). Circular RNAs and bladder cancer. Oncotargets and Therapy, 13, 9573–9586.
Article PubMed PubMed Central CAS Google Scholar
Liu, X., et al. (2021). Circular RNAs in prostate cancer: Biogenesis,biological functions, and clinical significance. Molecular Therapy--Nucleic Acids, 26, 1130–1147.
Comments (0)