MacArthur RD, Miller M, Albertson T, et al. Adequacy of early empiric antibiotic treatment and survival in severe sepsis: experience from the MONARCS trial. Clin Infect Dis 2004; 38: 284–8. https://doi.org/10.1086/379825
Evans L, Rhodes A, Alhazzani W, et al. Executive summary: Surviving Sepsis Campaign: international guidelines for the management of sepsis and septic shock 2021. Crit Care Med 2021; 49: 1974–82. https://doi.org/10.1097/ccm.0000000000005357
Kollef MH, Shorr AF, Bassetti M, et al. Timing of antibiotic therapy in the ICU. Crit Care 2021; 25: 360. https://doi.org/10.1186/s13054-021-03787-z
Article PubMed PubMed Central Google Scholar
Craig WA. Pharmacokinetic/pharmacodynamic parameters: rationale for antibacterial dosing of mice and men. Clin Infect Dis 1998; 26: 1–12. https://doi.org/10.1086/516284
Article CAS PubMed Google Scholar
Abdul-Aziz MH, Alffenaar JW, Bassetti M, et al. Antimicrobial therapeutic drug monitoring in critically ill adult patients: a position paper. Intensive Care Med 2020; 46: 1127–53. https://doi.org/10.1007/s00134-020-06050-1
Article PubMed PubMed Central Google Scholar
Guilhaumou R, Benaboud S, Bennis Y, et al. Optimization of the treatment with beta-lactam antibiotics in critically ill patients—guidelines from the French Society of Pharmacology and Therapeutics (Société Française de Pharmacologie et Thérapeutique—SFPT) and the French Society of Anaesthesia and Intensive Care Medicine (Société Française d’Anesthésie et Réanimation—SFAR). Crit Care 2019; 23: 104. https://doi.org/10.1186/s13054-019-2378-9
Article PubMed PubMed Central Google Scholar
Sumi CD, Heffernan AJ, Lipman J, Roberts JA, Sime FB. What antibiotic exposures are required to suppress the emergence of resistance for gram-negative bacteria? A systematic review. Clin Pharmacokinet 2019; 58: 1407–43. https://doi.org/10.1007/s40262-019-00791-z
El-Haffaf I, Caissy JA, Marsot A. Piperacillin-tazobactam in intensive care units: a review of population pharmacokinetic analyses. Clin Pharmacokinet 2021; 60: 855–75. https://doi.org/10.1007/s40262-021-01013-1
Article CAS PubMed Google Scholar
Fratoni AJ, Nicolau DP, Kuti JL. A guide to therapeutic drug monitoring of β-lactam antibiotics. Pharmacotherapy 2021; 41: 220–33. https://doi.org/10.1002/phar.2505
Article CAS PubMed Google Scholar
Chen IH, Nicolau DP. Augmented renal clearance and how to augment antibiotic dosing. Antibiotics (Basel) 2020; 9: 393. https://doi.org/10.3390/antibiotics9070393
Article CAS PubMed Google Scholar
Knaus WA, Draper EA, Wagner DP, Zimmerman JE. APACHE II: a severity of disease classification system. Crit Care Med 1985; 13: 818–29.
Article CAS PubMed Google Scholar
Ferreira FL, Bota DP, Bross A, Mélot C, Vincent JL. Serial evaluation of the SOFA score to predict outcome in critically ill patients. JAMA 2001; 286: 1754–8. https://doi.org/10.1001/jama.286.14.1754
Article CAS PubMed Google Scholar
Marik PE, Taeb AM. SIRS, qSOFA and new sepsis definition. J Thorac Dis 2017; 9: 943–5. https://doi.org/10.21037/jtd.2017.03.125
Article PubMed PubMed Central Google Scholar
Barletta JF, Mangram AJ, Byrne M, et al. Identifying augmented renal clearance in trauma patients: validation of the augmented renal clearance in trauma intensive care scoring system. J Trauma Acute Care Surg 2017; 82: 665–71. https://doi.org/10.1097/ta.0000000000001387
Bergeron N, Dubois MJ, Dumont M, Dial S, Skrobik Y. Intensive care delirium screening checklist: evaluation of a new screening tool. Intensive Care Med 2001; 27: 859–64. https://doi.org/10.1007/s001340100909
Article CAS PubMed Google Scholar
Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 2016; 315: 801–10. https://doi.org/10.1001/jama.2016.0287
Article CAS PubMed PubMed Central Google Scholar
Legrand T, Vodovar D, Tournier N, Khoudour N, Hulin A. Simultaneous determination of eight β-lactam antibiotics, amoxicillin, cefazolin, cefepime, cefotaxime, ceftazidime, cloxacillin, oxacillin, and piperacillin, in human plasma by using ultra-high-performance liquid chromatography with ultraviolet detection. Antimicrob Agents Chemother 2016; 60: 4734–42. https://doi.org/10.1128/aac.00176-16
Article CAS PubMed PubMed Central Google Scholar
Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing, 32nd edition; 2022. Available from URL: https://clsi.org/standards/products/elearning/education/using-m100-online-learning-performance-standards-for-antimicrobial-susceptibility-testing/ (accessed November 2023).
Zhanel GG, Adam HJ, Baxter MR, et al. 42936 pathogens from Canadian hospitals: 10 years of results (2007–16) from the CANWARD surveillance study. J Antimicrob Chemother 2019; 74: iv5–21. https://doi.org/10.1093/jac/dkz283
Beumier M, Casu GS, Hites M, et al. Elevated β-lactam concentrations associated with neurological deterioration in ICU septic patients. Minerva Anestesiol 2015; 81: 497–506.
Colman S, Stove V, De Waele JJ, Verstraete AG. Measuring unbound versus total piperacillin concentrations in plasma of critically ill patients: methodological issues and relevance. Ther Drug Monit 2019; 41: 325–30. https://doi.org/10.1097/ftd.0000000000000602
Article CAS PubMed Google Scholar
Schießer S, Hitzenbichler F, Kees MG, et al. Measurement of free plasma concentrations of beta-lactam antibiotics: an applicability study in intensive care unit patients. Ther Drug Monit 2021; 43: 264–70. https://doi.org/10.1097/ftd.0000000000000827
Briscoe SE, McWhinney BC, Lipman J, Roberts JA, Ungerer JP. A method for determining the free (unbound) concentration of ten beta-lactam antibiotics in human plasma using high performance liquid chromatography with ultraviolet detection. J Chromatogr B Analyt Technol Biomed Life Sci 2012; 907: 178–84. https://doi.org/10.1016/j.jchromb.2012.09.016
Article CAS PubMed Google Scholar
Roberts JA, Paul SK, Akova M, et al. DALI: defining antibiotic levels in intensive care unit patients: are current β-lactam antibiotic doses sufficient for critically ill patients? Clin Infect Dis 2014; 58: 1072–83. https://doi.org/10.1093/cid/ciu027
Article CAS PubMed Google Scholar
Udy AA, Lipman J, Jarrett P, et al. Are standard doses of piperacillin sufficient for critically ill patients with augmented creatinine clearance? Crit Care 2015; 19: 28. https://doi.org/10.1186/s13054-015-0750-y
Article PubMed PubMed Central Google Scholar
Zander J, Döbbeler G, Nagel D, et al. Piperacillin concentration in relation to therapeutic range in critically ill patients—a prospective observational study. Crit Care 2016; 20: 79. https://doi.org/10.1186/s13054-016-1255-z
Article PubMed PubMed Central Google Scholar
Smekal AK, Furebring M, Eliasson E, Lipcsey M. Low attainment to PK/PD-targets for β-lactams in a multi-center study on the first 72 h of treatment in ICU patients. Sci Rep 2022; 12: 21891. https://doi.org/10.1038/s41598-022-25967-9
Article CAS PubMed PubMed Central Google Scholar
Conil JM, Georges B, Mimoz O, et al. Influence of renal function on trough serum concentrations of piperacillin in intensive care unit patients. Intensive Care Med 2006; 32: 2063–6. https://doi.org/10.1007/s00134-006-0421-1
Article CAS PubMed Google Scholar
Carlier M, Carrette S, Roberts JA, et al. Meropenem and piperacillin/tazobactam prescribing in critically ill patients: does augmented renal clearance affect pharmacokinetic/pharmacodynamic target attainment when extended infusions are used? Crit Care 2013; 17: R84. https://doi.org/10.1186/cc12705
Article PubMed PubMed Central Google Scholar
Quinton MC, Bodeau S, Kontar L, et al. Neurotoxic concentration of piperacillin during continuous infusion in critically ill patients. Antimicrob Agents Chemother 2017; 61: e00654–17. https://doi.org/10.1128/aac.00654-17
Article CAS PubMed PubMed Central Google Scholar
Imani S, Buscher H, Marriott D, Gentili S, Sandaradura I. Too much of a good thing: a retrospective study of β-lactam concentration–toxicity relationships. J Antimicrob Chemother 2017; 72: 2891–7. https://doi.org/10.1093/jac/dkx209
Article CAS PubMed Google Scholar
Blot SI, Pea F, Lipman J. The effect of pathophysiology on pharmacokinetics in the critically ill patient—concepts appraised by the example of antimicrobial agents. Adv Drug Deliv Rev 2014; 77: 3–11. https://doi.org/10.1016/j.addr.2014.07.006
Article CAS PubMed Google Scholar
Roberts JA, Lipman J. Pharmacokinetic issues for antibiotics in the critically ill patient. Crit Care Med 2009; 37: 840–51. https://doi.org/10.1097/ccm.0b013e3181961bff
Article CAS PubMed Google Scholar
Brunetti L, Poustchi S, Cunningham D, et al. Clinical and economic impact of empirical extended-infusion piperacillin-tazobactam in a community medical center. Ann Pharmacother 2015; 49: 754–60. https://doi.org/10.1177/1060028015579427
Comments (0)