Valenzuela, P. L. et al. Obesity and the risk of cardiometabolic diseases. Nat. Rev. Cardiol. 20, 475–494 (2023).
Saha, A., Kolonin, M. G. & DiGiovanni, J. Obesity and prostate cancer — microenvironmental roles of adipose tissue. Nat. Rev. Urol. 20, 579–596 (2023).
de Vos, W. M., Tilg, H., Van Hul, M. & Cani, P. D. Gut microbiome and health: mechanistic insights. Gut 71, 1020–1032 (2022).
Van Hul, M. & Cani, P. D. The gut microbiota in obesity and weight management: microbes as friends or foe. Nat. Rev. Endocrinol. 19, 258–271 (2023).
Lafontan, M. Historical perspectives in fat cell biology: the fat cell as a model for the investigation of hormonal and metabolic pathways. Am. J. Physiol. Cell Physiol. 302, C327–C359 (2012).
Article CAS PubMed Google Scholar
Hammarstedt, A., Gogg, S., Hedjazifar, S., Nerstedt, A. & Smith, U. Impaired adipogenesis and dysfunctional adipose tissue in human hypertrophic obesity. Physiol. Rev. 98, 1911–1941 (2018).
Article CAS PubMed Google Scholar
White, U., Beyl, R. A. & Ravussin, E. A higher proportion of small adipocytes is associated with increased visceral and ectopic lipid accumulation during weight gain in response to overfeeding in men. Int. J. Obes. 46, 1560–1563 (2022).
White, U. & Ravussin, E. Dynamics of adipose tissue turnover in human metabolic health and disease. Diabetologia 62, 17–23 (2019).
Koenen, M., Hill, M. A., Cohen, P. & Sowers, J. R. Obesity, adipose tissue and vascular dysfunction. Circ. Res. 128, 951–968 (2021).
Article CAS PubMed PubMed Central Google Scholar
Longo, M. et al. Adipose tissue dysfunction as determinant of obesity-associated metabolic complications. Int. J. Mol. Sci. 20, 2358 (2019).
Article CAS PubMed PubMed Central Google Scholar
Kahn, C. R., Wang, G. & Lee, K. Y. Altered adipose tissue and adipocyte function in the pathogenesis of metabolic syndrome. J. Clin. Invest. 129, 3990–4000 (2019).
Article PubMed PubMed Central Google Scholar
Karpe, F. & Pinnick, K. E. Biology of upper-body and lower-body adipose tissue — link to whole-body phenotypes. Nat. Rev. Endocrinol. 11, 90–100 (2015).
Article CAS PubMed Google Scholar
Zhang, M., Hu, T., Zhang, S. & Zhou, L. Associations of different adipose tissue depots with insulin resistance: a systematic review and meta-analysis of observational studies. Sci. Rep. 5, 18495 (2015).
Article CAS PubMed PubMed Central Google Scholar
Tchkonia, T. et al. Mechanisms and metabolic implications of regional differences among fat depots. Cell Metab. 17, 644–656 (2013).
Article CAS PubMed PubMed Central Google Scholar
McLaughlin, T., Lamendola, C., Liu, A. & Abbasi, F. Preferential fat deposition in subcutaneous versus visceral depots is associated with insulin sensitivity. J. Clin. Endocrinol. Metab. 96, E1756–1760 (2011).
Article CAS PubMed PubMed Central Google Scholar
Klein, S. et al. Absence of an effect of liposuction on insulin action and risk factors for coronary heart disease. N. Engl. J. Med. 350, 2549–2557 (2004).
Article CAS PubMed Google Scholar
Tran, T. T., Yamamoto, Y., Gesta, S. & Kahn, C. R. Beneficial effects of subcutaneous fat transplantation on metabolism. Cell Metab. 7, 410–420 (2008).
Article CAS PubMed PubMed Central Google Scholar
Cypess, A. M. Reassessing human adipose tissue. N. Engl. J. Med. 386, 768–779 (2022).
Article CAS PubMed Google Scholar
Luong, Q., Huang, J. & Lee, K. Y. Deciphering white adipose tissue heterogeneity. Biology 8, 23 (2019).
Article CAS PubMed PubMed Central Google Scholar
Iacobellis, G. Epicardial adipose tissue in contemporary cardiology. Nat. Rev. Cardiol. 19, 593–606 (2022).
Article CAS PubMed PubMed Central Google Scholar
Zhang, H. et al. Characteristics of mesenteric adipose tissue attached to different intestinal segments and their roles in immune regulation. Am. J. Physiol. Gastrointest. Liver Physiol. 322, G310–G326 (2022).
Wu, Z. et al. Mesenteric adipose tissue contributes to intestinal barrier integrity and protects against nonalcoholic fatty liver disease in mice. Am. J. Physiol. Gastrointest. Liver Physiol. 315, G659–G670 (2018).
Article CAS PubMed Google Scholar
Yu, Z., Wang, Y., Yu, Z., Lu, M. & Xu, B. Crosstalk between adipose tissue and the microbiota-gut-brain axis in metabolic diseases. Int. J. Biol. Sci. 18, 1706–1723 (2022).
Article CAS PubMed PubMed Central Google Scholar
Virtanen, K. A. et al. Functional brown adipose tissue in healthy adults. N. Engl. J. Med. 360, 1518–1525 (2009).
Article CAS PubMed Google Scholar
Jung, S. M., Sanchez-Gurmaches, J. & Guertin, D. A. Brown adipose tissue development and metabolism. Handb. Exp. Pharmacol. 251, 3–36 (2019).
Article CAS PubMed PubMed Central Google Scholar
Yang, F. T. & Stanford, K. I. Batokines: mediators of inter-tissue communication (a mini-review). Curr. Obes. Rep. 11, 1–9 (2022).
Article PubMed PubMed Central Google Scholar
Scheele, C. & Wolfrum, C. Brown adipose crosstalk in tissue plasticity and human metabolism. Endocr. Rev. 41, 53–65 (2020).
Kajimura, S. et al. Regulation of the brown and white fat gene programs through a PRDM16/CtBP transcriptional complex. Genes Dev. 22, 1397–1409 (2008).
Article CAS PubMed PubMed Central Google Scholar
Seale, P. et al. PRDM16 controls a brown fat/skeletal muscle switch. Nature 454, 961–967 (2008).
Article CAS PubMed PubMed Central Google Scholar
Timmons, J. A. et al. Myogenic gene expression signature establishes that brown and white adipocytes originate from distinct cell lineages. Proc. Natl Acad. Sci. USA 104, 4401–4406 (2007).
Article CAS PubMed PubMed Central Google Scholar
Sanchez-Gurmaches, J. & Guertin, D. A. Adipocytes arise from multiple lineages that are heterogeneously and dynamically distributed. Nat. Commun. 5, 4099 (2014).
Article CAS PubMed Google Scholar
Schulz, T. J. et al. Identification of inducible brown adipocyte progenitors residing in skeletal muscle and white fat. Proc. Natl Acad. Sci. USA 108, 143–148 (2011).
Article CAS PubMed Google Scholar
Yang Loureiro, Z. et al. Wnt signaling preserves progenitor cell multipotency during adipose tissue development. Nat. Metab. 5, 1014–1028 (2023).
Article CAS PubMed PubMed Central Google Scholar
Palani, N. P. et al. Adipogenic and SWAT cells separate from a common progenitor in human brown and white adipose depots. Nat. Metab. 5, 996–1013 (2023).
Article CAS PubMed PubMed Central Google Scholar
Demine, S., Renard, P. & Arnould, T. Mitochondrial uncoupling: a key controller of biological processes in physiology and diseases. Cells 8, 795 (2019).
Article CAS PubMed PubMed Central Google Scholar
Kalinovich, A. V., de Jong, J. M., Cannon, B. & Nedergaard, J. UCP1 in adipose tissues: two steps to full browning. Biochimie 134, 127–137 (2017).
Article CAS PubMed Google Scholar
Lam, Y. Y. & Ravussin, E. Analysis of energy metabolism in humans: a review of methodologies. Mol. Metab. 5, 1057–1071 (2016).
Comments (0)