The role of pyroptosis and gasdermin family in tumor progression and immune microenvironment

Zychlinsky A, Prevost MC, Sansonetti PJ. Shigella flexneri induces apoptosis in infected macrophages. Nature. 1992;358(6382):167–9. https://doi.org/10.1038/358167a0.

Article  CAS  PubMed  Google Scholar 

Hilbi H, Chen Y, Thirumalai K, et al. The interleukin 1beta-converting enzyme, caspase 1, is activated during Shigella flexneri-induced apoptosis in human monocyte-derived macrophages. Infect Immun. 1997;65(12):5165–70. https://doi.org/10.1128/iai.65.12.5165-5170.1997.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cookson BT, Brennan MA. Pro-inflammatory programmed cell death. Trends Microbiol. 2001;9(3):113–4. https://doi.org/10.1016/s0966-842x(00)01936-3.

Article  CAS  PubMed  Google Scholar 

Boise LH, Collins CM. Salmonella-induced cell death: apoptosis, necrosis or programmed cell death? Trends Microbiol. 2001;9(2):64–7. https://doi.org/10.1016/s0966-842x(00)01937-5.

Article  CAS  PubMed  Google Scholar 

Ding J, Wang K, Liu W, et al. Pore-forming activity and structural autoinhibition of the gasdermin family. Nature. 2016;535(7610):111–6. https://doi.org/10.1038/nature18590.

Article  CAS  PubMed  Google Scholar 

Miao N, Yin F, Xie H, et al. The cleavage of gasdermin D by caspase-11 promotes tubular epithelial cell pyroptosis and urinary IL-18 excretion in acute kidney injury. Kidney Int. 2019;96(5):1105–20. https://doi.org/10.1016/j.kint.2019.04.035.

Article  CAS  PubMed  Google Scholar 

Karmakar M, Minns M, Greenberg EN, et al. N-GSDMD trafficking to neutrophil organelles facilitates IL-1beta release independently of plasma membrane pores and pyroptosis. Nat Commun. 2020;11(1):2212. https://doi.org/10.1038/s41467-020-16043-9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Broz P, Ruby T, Belhocine K, et al. Caspase-11 increases susceptibility to Salmonella infection in the absence of caspase-1. Nature. 2012;490(7419):288–91. https://doi.org/10.1038/nature11419.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kayagaki N, Stowe IB, Lee BL, et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature. 2015;526(7575):666–71. https://doi.org/10.1038/nature15541.

Article  CAS  PubMed  Google Scholar 

Shi J, Zhao Y, Wang K, et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature. 2015;526(7575):660–5. https://doi.org/10.1038/nature15514.

Article  CAS  Google Scholar 

Broz P, Pelegrin P, Shao F. The gasdermins, a protein family executing cell death and inflammation. Nat Rev Immunol. 2020;20(3):143–57. https://doi.org/10.1038/s41577-019-0228-2.

Article  CAS  PubMed  Google Scholar 

Ye Y, Dai Q, Qi H. A novel defined pyroptosis-related gene signature for predicting the prognosis of ovarian cancer. Cell Death Discov. 2021;7(1):71. https://doi.org/10.1038/s41420-021-00451-x.

Article  CAS  PubMed  PubMed Central  Google Scholar 

He H, Yi L, Zhang B, et al. USP24-GSDMB complex promotes bladder cancer proliferation via activation of the STAT3 pathway. Int J Biol Sci. 2021;17(10):2417–29. https://doi.org/10.7150/ijbs.54442.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cui YQ, Meng F, Zhan WL, et al. High expression of GSDMC is associated with poor survival in kidney clear cell cancer. Biomed Res Int. 2021;2021:5282894. https://doi.org/10.1155/2021/5282894.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tan G, Huang C, Chen J, et al. HMGB1 released from GSDME-mediated pyroptotic epithelial cells participates in the tumorigenesis of colitis-associated colorectal cancer through the ERK1/2 pathway. J Hematol Oncol. 2020;13(1):149. https://doi.org/10.1186/s13045-020-00985-0.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang Z, Zhang Y, Xia S, et al. Gasdermin E suppresses tumour growth by activating anti-tumour immunity. Nature. 2020;579(7799):415–20. https://doi.org/10.1038/s41586-020-2071-9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Adachi K, Kano Y, Nagai T, et al. IL-7 and CCL19 expression in CAR-T cells improves immune cell infiltration and CAR-T cell survival in the tumor. Nat Biotechnol. 2018;36(4):346–51. https://doi.org/10.1038/nbt.4086.

Article  CAS  PubMed  Google Scholar 

Neelapu SS, Locke FL, Bartlett NL, et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N Engl J Med. 2017;377(26):2531–44. https://doi.org/10.1056/NEJMoa1707447.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu Y, Fang Y, Chen X, et al. Gasdermin E-mediated target cell pyroptosis by CAR T cells triggers cytokine release syndrome. Sci Immunol. 2020. https://doi.org/10.1126/sciimmunol.aax7969.

Article  PubMed  PubMed Central  Google Scholar 

Zhou Z, He H, Wang K, et al. Granzyme A from cytotoxic lymphocytes cleaves GSDMB to trigger pyroptosis in target cells. Science. 2020. https://doi.org/10.1126/science.aaz7548.

Article  PubMed  PubMed Central  Google Scholar 

Wang X, Li X, Liu S, et al. PCSK9 regulates pyroptosis via mtDNA damage in chronic myocardial ischemia. Basic Res Cardiol. 2020;115(6):66. https://doi.org/10.1007/s00395-020-00832-w.

Article  CAS  PubMed  Google Scholar 

Porter AG, Janicke RU. Emerging roles of caspase-3 in apoptosis. Cell Death Differ. 1999;6(2):99–104. https://doi.org/10.1038/sj.cdd.4400476.

Article  CAS  PubMed  Google Scholar 

McKenzie BA, Mamik MK, Saito LB, et al. Caspase-1 inhibition prevents glial inflammasome activation and pyroptosis in models of multiple sclerosis. Proc Natl Acad Sci USA. 2018;115(26):E6065–74. https://doi.org/10.1073/pnas.1722041115.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang H, Zhou XW, Li CB, et al. The emerging role of pyroptosis in pediatric cancers: from mechanism to therapy. J Hematol Oncol. 2022. https://doi.org/10.1186/s13045-022-01365-6.

Article  PubMed  PubMed Central  Google Scholar 

Chen X, He WT, Hu L, et al. Pyroptosis is driven by non-selective gasdermin-D pore and its morphology is different from MLKL channel-mediated necroptosis. Cell Res. 2016;26(9):1007–20. https://doi.org/10.1038/cr.2016.100.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cai J, Yi M, Tan Y, et al. Natural product triptolide induces GSDME-mediated pyroptosis in head and neck cancer through suppressing mitochondrial hexokinase-IotaIota. J Exp Clin Cancer Res. 2021;40(1):190. https://doi.org/10.1186/s13046-021-01995-7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yu P, Zhang X, Liu N, et al. Pyroptosis: mechanisms and diseases. Signal Transduct Target Ther. 2021;6(1):128. https://doi.org/10.1038/s41392-021-00507-5.

Article  PubMed  PubMed Central  Google Scholar 

Kovacs SB, Miao EA. Gasdermins: effectors of pyroptosis. Trends Cell Biol. 2017;27(9):673–84. https://doi.org/10.1016/j.tcb.2017.05.005.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jia C, Zhang J, Chen H, et al. Endothelial cell pyroptosis plays an important role in Kawasaki disease via HMGB1/RAGE/cathespin B signaling pathway and NLRP3 inflammasome activation. Cell Death Dis. 2019;10(10):778. https://doi.org/10.1038/s41419-019-2021-3.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu X, Zhang H, Qi W, et al. Nicotine promotes atherosclerosis via ROS-NLRP3-mediated endothelial cell pyroptosis. Cell Death Dis. 2018;9(2):171. https://doi.org/10.1038/s41419-017-0257-3.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tan Y, Chen Q, Li X, et al. Pyroptosis: a new paradigm of cell death for fighting against cancer. J Exp Clin Cancer Res. 2021;40(1):153. https://doi.org/10.1186/s13046-021-01959-x.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Santos LD, Antunes KH, Muraro SP, et al. TNF-mediated alveolar macrophage necroptosis drives disease pathogenesis during respiratory syncytial virus infection. Eur Respir J. 2021. https://doi.org/10.1183/13993003.03764-2020.

Article  PubMed  PubMed Central 

Comments (0)

No login
gif