Staphylococcal superantigen-like protein 10 enhances the amyloidogenic biofilm formation in Staphylococcus aureus

Costerton JW, Geesey GG, Cheng KJ. How Bacteria stick. Sci Am. 1978;238(1):86–95. https://doi.org/10.1038/scientificamerican0178-86.

Article  CAS  PubMed  Google Scholar 

Ribeiro M, Monteiro FJ, Ferraz MP. Infection of Orthopedic Implants with emphasis on bacterial adhesion process and techniques used in studying bacterial-material interactions. Biomatter. 2012;2(4):176–94. https://doi.org/10.4161/biom.22905.

Article  PubMed  PubMed Central  Google Scholar 

McConoughey SJ, Howlin R, Granger JF, Manring MM, Calhoun JH, Shirtliff M, Kathju S, Stoodley P. Biofilms in Periprosthetic Orthopedic Infections. Future Microbiol. 2014;9(8):987–1007. https://doi.org/10.2217/fmb.14.64.

Article  CAS  PubMed  Google Scholar 

Lerche CJ, Schwartz F, Theut M, Fosbøl EL, Iversen K, Bundgaard H, Høiby N, Moser C. Anti-Biofilm Approach in Infective Endocarditis Exposes New Treatment Strategies for Improved Outcome. Front Cell Dev Biol 2021, 9. https://doi.org/10.3389/fcell.2021.643335.

Sharma D, Misba L, Khan AU. Antibiotics versus Biofilm: an emerging battleground in Microbial communities. Antimicrob Resist Infect Control. 2019;8(1):76. https://doi.org/10.1186/s13756-019-0533-3.

Article  PubMed  PubMed Central  Google Scholar 

Uruén C, Chopo-Escuin G, Tommassen J, Mainar-Jaime RC, Arenas J. Biofilms as Promoters of Bacterial Antibiotic Resistance and Tolerance. Antibiotics 2020, 10 (1), 3. https://doi.org/10.3390/antibiotics10010003.

Lister JL, Horswill AR. Staphylococcus Aureus Biofilms: Recent Developments in Biofilm Dispersal. Front Cell Infect Microbiol 2014, 4. https://doi.org/10.3389/fcimb.2014.00178.

Moormeier DE, Bayles KW. Staphylococcus Aureus Biofilm: a Complex Developmental Organism. Mol Microbiol. 2017;104(3):365–76. https://doi.org/10.1111/mmi.13634.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Taglialegna A, Navarro S, Ventura S, Garnett JA, Matthews S, Penades JR, Lasa I, Valle J. Staphylococcal bap proteins build amyloid Scaffold Biofilm matrices in response to environmental signals. PLoS Pathog. 2016;12(6):e1005711. https://doi.org/10.1371/journal.ppat.1005711.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Van Gerven N, Van der Verren SE, Reiter DM, Remaut H. The role of functional amyloids in bacterial virulence. J Mol Biol. 2018;430(20):3657–84. https://doi.org/10.1016/j.jmb.2018.07.010.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Blanco LP, Evans ML, Smith DR, Badtke MP, Chapman MR, Diversity. Biogenesis and function of Microbial Amyloids. Trends Microbiol. 2012;20(2):66–73. https://doi.org/10.1016/j.tim.2011.11.005.

Article  CAS  PubMed  Google Scholar 

Larsen P, Nielsen JL, Dueholm MS, Wetzel R, Otzen D, Nielsen PH. Amyloid adhesins are abundant in natural biofilms. Environ Microbiol. 2007;9(12):3077–90. https://doi.org/10.1111/j.1462-2920.2007.01418.x.

Article  CAS  PubMed  Google Scholar 

Williams RJ, Ward JM, Henderson B, Poole S, O’Hara BP, Wilson M, Nair SP. Identification of a Novel Gene Cluster Encoding Staphylococcal Exotoxin-Like proteins: characterization of the Prototypic Gene and its protein product, SET1. Infect Immun. 2000;68(8):4407–15. https://doi.org/10.1128/IAI.68.8.4407-4415.2000.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Arcus VL, Langley R, Proft T, Fraser JD, Baker EN. The three-Dimensional structure of a Superantigen-like protein, SET3, from a Pathogenicity Island of the Staphylococcus Aureus Genome. J Biol Chem. 2002;277(35):32274–81. https://doi.org/10.1074/jbc.M203914200.

Article  CAS  PubMed  Google Scholar 

Langley R, Wines B, Willoughby N, Basu I, Proft T, Fraser JD. The Staphylococcal Superantigen-Like protein 7 binds IgA and complement C5 and inhibits IgA-FcαRI binding and serum killing of Bacteria. J Immunol. 2005;174(5):2926–33. https://doi.org/10.4049/jimmunol.174.5.2926.

Article  CAS  PubMed  Google Scholar 

Dutta D, Mukherjee D, Mukherjee IA, Maiti TK, Basak A, Das AK. Staphylococcal superantigen-like proteins interact with human MAP kinase signaling protein ERK2. FEBS Lett. 2020;594(2):266–77. https://doi.org/10.1002/1873-3468.13590.

Article  CAS  PubMed  Google Scholar 

Yokoyama R, Itoh S, Kamoshida G, Takii T, Fujii S, Tsuji T, Onozaki K. Staphylococcal Superantigen-Like protein 3 binds to the toll-like receptor 2 Extracellular Domain and inhibits Cytokine Production Induced by Staphylococcus Aureus, Cell Wall Component, or Lipopeptides in Murine macrophages. Infect Immun. 2012;80(8):2816–25. https://doi.org/10.1128/IAI.00399-12.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bestebroer J, Poppelier MJJG, Ulfman LH, Lenting PJ, Denis CV, van Kessel KPM, van Strijp JAG, de Haas CJ. C. Staphylococcal Superantigen-like 5 binds PSGL-1 and inhibits P-Selectin–mediated Neutrophil Rolling. Blood. 2007;109(7):2936–43. https://doi.org/10.1182/blood-2006-06-015461.

Article  CAS  PubMed  Google Scholar 

Itoh S, Hamada E, Kamoshida G, Yokoyama R, Takii T, Onozaki K, Tsuji T. Staphylococcal superantigen-like protein 10 (SSL10) binds to human immunoglobulin G (IgG) and inhibits complement activation via the classical pathway. Mol Immunol. 2010;47(4):932–8. https://doi.org/10.1016/j.molimm.2009.09.027.

Article  CAS  PubMed  Google Scholar 

Yang C, Barbieri JT, Dahms NM, Chen C. Multiple domains of Staphylococcal Superantigen-like protein 11 (SSL11) contribute to Neutrophil Inhibition. Biochemistry. 2022;61(7):616–24. https://doi.org/10.1021/acs.biochem.2c00018.

Article  CAS  PubMed  Google Scholar 

Kobayashi M, Kitano T, Nishiyama S, Sanjo H, Onozaki K, Taki S, Itoh S, Hida S. Staphylococcal superantigen-like 12 activates murine bone marrow derived mast cells. Biochem Biophys Res Commun. 2019;511(2):350–5. https://doi.org/10.1016/j.bbrc.2019.02.052.

Article  CAS  PubMed  Google Scholar 

Zhao Y, van Kessel KPM, de Haas CJC, Rogers MRC, van Strijp JAG, Haas P-JA. Staphylococcal superantigen-like protein 13 activates neutrophils via Formyl Peptide Receptor 2. Cell Microbiol. 2018;20(11):e12941. https://doi.org/10.1111/cmi.12941.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Walenkamp AME, Boer IGJ, Bestebroer J, Rozeveld D, Timmer-Bosscha H, Hemrika W, van Strijp JAG, de Haas CJ. C. Staphylococcal Superantigen-like 10 inhibits CXCL12-Induced Human Tumor Cell Migration. Neoplasia. 2009;11(4):333–44. https://doi.org/10.1593/neo.81508.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Patel D, Wines BD, Langley RJ, Fraser JD. Specificity of Staphylococcal Superantigen-Like protein 10 toward the human IgG1 fc domain. J Immunol. 2010;184(11):6283–92. https://doi.org/10.4049/jimmunol.0903311.

Article  CAS  PubMed  Google Scholar 

Itoh S, Yokoyama R, Kamoshida G, Fujiwara T, Okada H, Takii T, Tsuji T, Fujii S, Hashizume H, Onozaki K. Staphylococcal superantigen-like protein 10 (SSL10) inhibits blood coagulation by binding to Prothrombin and factor xa via their γ-Carboxyglutamic acid (gla) domain. J Biol Chem. 2013;288(30):21569–80. https://doi.org/10.1074/jbc.M113.451419.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kundu P, Dutta D, Kumar Das A. The Α1β1 region is crucial for Biofilm Enhancement activity of MTC28 in Mycobacterium Smegmatis. FEBS Lett. 2017;591(20):3333–47. https://doi.org/10.1002/1873-3468.12823.

Article  CAS  PubMed  Google Scholar 

Conchillo-Solé O, de Groot NS, Avilés FX, Vendrell J, Daura X, Ventura S. AGGRESCAN: a server for the prediction and evaluation of hot spots of aggregation in Polypeptides. BMC Bioinformatics. 2007;8(1):65. https://doi.org/10.1186/1471-2105-8-65.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fernandez-Escamilla A-M, Rousseau F, Schymkowitz J, Serrano L. Prediction of sequence-dependent and Mutational effects on the aggregation of peptides and proteins. Nat Biotechnol. 2004;22(10):1302–6. https://doi.org/10.1038/nbt1012.

Article  CAS  PubMed  Google Scholar 

Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindahl EGROMACS. High Performance Molecular Simulations through Multi-Level Parallelism from Laptops to Supercomputers. SoftwareX 2015, 1–2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001.

Robertson MJ, Tirado-Rives J, Jorgensen WL. Improved peptide and Protein Torsional Energetics with the OPLS-AA Force Field. J Chem Theory Comput. 2015;11(7):3499–509. https://doi.org/10.1021/acs.jctc.5b00356.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Darden T, York D, Pedersen L. Particle Mesh Ewald: An N·log(N) method for Ewald Sums in large systems. J Chem Phys. 1993;98(12):10089–92. https://doi.org/10.1063/1.464397.

Article  CAS  Google Scholar 

Taglialegna A, Lasa I, Valle J. Amyloid structures as Biofilm Matrix scaffolds. J Bacteriol. 2016;198(19):2579–88. https://doi.org/10.1128/JB.00122-16.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Álvarez-Mena A, Cámara-Almirón J, de Vicente A, Romero D. Multifunctional amyloids in the Biology of Gram-positive Bacteria. Microorganisms. 2020;8(12):1–20. https://doi.org/10.3390/microorganisms8122020.

Article  CAS  Google Scholar 

Erskine E, MacPhee CE, Stanley-Wall NR. Functional amyloid and other protein fibers in the Biofilm Matrix. J Mol Biol. 2018;430(20):3642–56. https://doi.org/10.1016/j.jmb.2018.07.026.

Article 

Comments (0)

No login
gif