Driggers, E. M., Hale, S. P., Lee, J. & Terrett, N. K. The exploration of macrocycles for drug discovery—an underexploited structural class. Nat. Rev. Drug Discov. 7, 608–624 (2008).
Article CAS PubMed Google Scholar
Huang, Y., Wiedmann, M. M. & Suga, H. RNA display methods for the discovery of bioactive macrocycles. Chem. Rev. 119, 10360–10391 (2019).
Article CAS PubMed Google Scholar
Tsomaia, N. Peptide therapeutics: targeting the undruggable space. Eur. J. Med. Chem. 94, 459–470 (2015).
Article CAS PubMed Google Scholar
Malde, A. K., Hill, T. A., Iyer, A. & Fairlie, D. P. Crystal structures of protein-bound cyclic peptides. Chem. Rev. 119, 9861–9914 (2019).
Article CAS PubMed Google Scholar
White, C. J. & Yudin, A. K. Contemporary strategies for peptide macrocyclization. Nat. Chem. 3, 509–524 (2011).
Article CAS PubMed Google Scholar
Sarojini, V., Cameron, A. J., Varnava, K. G., Denny, W. A. & Sanjayan, G. Cyclic tetrapeptides from nature and design: a review of synthetic methodologies, structure, and function. Chem. Rev. 119, 10318–10359 (2019).
Article CAS PubMed Google Scholar
Du, L., Risinger, A. L., King, J. B., Powell, D. R. & Cichewicz, R. H. A potent HDAC inhibitor, 1-Alaninechlamydocin, from a Tolypocladium sp. induces G2/M cell cycle arrest and apoptosis in MIA PaCa-2 cells. J. Nat. Prod. 77, 1753–1757 (2014).
Article CAS PubMed PubMed Central Google Scholar
Pérez-Victoria, I. et al. Isolation and structural elucidation of cyclic tetrapeptides from Onychocola sclerotica. J. Nat. Prod. 75, 1210–1214 (2012).
Steele, J. A., Uchytil, T. F., Durbin, R. D. & Rich, D. H. Chloroplast coupling factor 1: a species-specific receptor for tentoxin. Proc. Natl Acad. Sci. USA 73, 2245–2248 (1976).
Saito, T. et al. CJ-15, 208, a novel kappa opioid receptor antagonist from a fungus, Ctenomyces serratus ATCC15502. J.Antibiotics 55, 847–854 (2002).
Chung, B. K. W., White, C. J., Scully, C. C. G. & Yudin, A. K. The reactivity and conformational control of cyclic tetrapeptides derived from aziridine-containing amino acids. Chem. Sci. 7, 6662–6668 (2016).
Article CAS PubMed PubMed Central Google Scholar
Skropeta, D., Jolliffe, K. A. & Turner, P. Pseudoprolines as removable turn inducers: tools for the cyclization of small peptides. J. Org. Chem. 69, 8804–8809 (2004).
Article CAS PubMed Google Scholar
Alcaro, M. C. et al. On-resin head-to-tail cyclization of cyclotetrapeptides: optimization of crucial parameters. J. Pept. Sci. 10, 218–228 (2004).
Article CAS PubMed Google Scholar
Meutermans, W. D. F. et al. Difficult macrocyclizations: new strategies for synthesizing highly strained cyclic tetrapeptides. Org. Lett. 5, 2711–2714 (2003).
Article CAS PubMed Google Scholar
Vidović, N. et al. Chloride-assisted peptide macrocyclization. Org. Lett. 22, 2129–2134 (2020).
Jing, X. & Jin, K. A gold mine for drug discovery: strategies to develop cyclic peptides into therapies. Med. Res. Rev. 40, 753–810 (2020).
Article CAS PubMed Google Scholar
Abdalla, M. A. Medicinal significance of naturally occurring cyclotetrapeptides. J. Nat. Med. 70, 708–720 (2016).
Article CAS PubMed Google Scholar
Li, Y.-H. et al. Putative nonribosomal peptide synthetase and cytochrome P450 genes responsible for tentoxin biosynthesis in Alternaria alternata ZJ33. Toxins 8, 234 (2016).
Article CAS PubMed PubMed Central Google Scholar
Witte, T. E., Villeneuve, N., Boddy, C. N. & Overy, D. P. Accessory chromosome-acquired secondary metabolism in plant pathogenic fungi: the evolution of biotrophs into host-specific pathogens. Front. Microbiol. 12, 664276 (2021).
Article PubMed PubMed Central Google Scholar
Xu, H.-M. et al. Tataricins A and B, two novel cyclotetrapeptides from Aster tataricus, and their absolute configuration assignment. Tetrahedron Lett. 54, 1380–1383 (2013).
Ma, G.-L. et al. Biosynthesis of tasikamides via pathway coupling and diazonium-mediated hydrazone formation. J. Am. Chem. Soc. 144, 1622–1633 (2022).
Article CAS PubMed Google Scholar
Kohli, R. M., Walsh, C. T. & Burkart, M. D. Biomimetic synthesis and optimization of cyclic peptide antibiotics. Nature 418, 658–661 (2002).
Article CAS PubMed Google Scholar
Trauger, J. W., Kohli, R. M., Mootz, H. D., Marahiel, M. A. & Walsh, C. T. Peptide cyclization catalysed by the thioesterase domain of tyrocidine synthetase. Nature 407, 215–218 (2000).
Article CAS PubMed Google Scholar
Horsman, M. E., Hari, T. P. A. & Boddy, C. N. Polyketide synthase and non-ribosomal peptide synthetase thioesterase selectivity: logic gate or a victim of fate? Nat. Prod. Rep. 33, 183–202 (2016).
Article CAS PubMed Google Scholar
Gao, X. et al. Cyclization of fungal nonribosomal peptides by a terminal condensation-like domain. Nat. Chem. Biol. 8, 823–830 (2012).
Article CAS PubMed PubMed Central Google Scholar
Hoyer, K. M., Mahlert, C. & Marahiel, M. A. The iterative gramicidin S thioesterase catalyzes peptide ligation and cyclization. Chem. Biol. 14, 13–22 (2007).
Article CAS PubMed PubMed Central Google Scholar
Kuranaga, T. et al. Total synthesis of the nonribosomal peptide surugamide B and identification of a new offloading cyclase family. Angew. Chem. 130, 9591–9595 (2018).
Zhou, Y. et al. Investigation of penicillin binding protein (PBP)-like peptide cyclase and hydrolase in surugamide non-ribosomal peptide biosynthesis. Cell Chem. Biol. 26, 737–744.e4 (2019).
Article CAS PubMed Google Scholar
Thankachan, D. et al. A trans-acting cyclase offloading strategy for nonribosomal peptide synthetases. ACS Chem. Biol. 14, 845–849 (2019).
Article CAS PubMed Google Scholar
Matsuda, K. et al. SurE is a trans -acting thioesterase cyclizing two distinct non-ribosomal peptides. Org. Biomol. Chem. 17, 1058–1061 (2019).
Article CAS PubMed Google Scholar
Matsuda, K. et al. Heterochiral coupling in non-ribosomal peptide macrolactamization. Nat. Catal. 3, 507–515 (2020).
Matsuda, K., Fujita, K. & Wakimoto, T. PenA, a penicillin-binding protein-type thioesterase specialized for small peptide cyclization. J. Ind. Microbiol. Biotechnol. 48, kuab023 (2021).
Article CAS PubMed PubMed Central Google Scholar
Fazal, A., Wheeler, J., Webb, M. E. & Seipke, R. F. The N-terminal substrate specificity of the SurE peptide cyclase. Org. Biomol. Chem. 20, 7232–7235 (2022).
Article CAS PubMed PubMed Central Google Scholar
Kobayashi, M., Fujita, K., Matsuda, K. & Wakimoto, T. Streamlined chemoenzymatic synthesis of cyclic peptides by non-ribosomal peptide cyclases. J. Am. Chem. Soc. 145, 3270–3275 (2023).
Article CAS PubMed Google Scholar
Fazal, A., Webb, M. E. & Seipke, R. F. The desotamide family of antibiotics. Antibiotics 9, 452 (2020).
Article CAS PubMed PubMed Central Google Scholar
Booth, T. J. et al. Bifurcation drives the evolution of assembly-line biosynthesis. Nat. Commun. 13, 3498 (2022).
Article CAS PubMed PubMed Central Google Scholar
Mirdita, M. et al. ColabFold: making protein folding accessible to all. Nat. Methods 19, 679–682 (2022).
Article CAS PubMed PubMed Central Google Scholar
Son, S. et al. Genomics-driven discovery of chlorinated cyclic hexapeptides Ulleungmycins A and B from a Streptomyces species. J. Nat. Prod. 80, 3025–3031 (2017).
Article CAS PubMed Google Scholar
Gao, D.-W. et al. A polyketide cyclase that forms medium-ring lactones. J. Am. Chem. Soc. 143, 80–84 (2021).
Comments (0)