Biocatalytic cyclization of small macrolactams by a penicillin-binding protein-type thioesterase

Driggers, E. M., Hale, S. P., Lee, J. & Terrett, N. K. The exploration of macrocycles for drug discovery—an underexploited structural class. Nat. Rev. Drug Discov. 7, 608–624 (2008).

Article  CAS  PubMed  Google Scholar 

Huang, Y., Wiedmann, M. M. & Suga, H. RNA display methods for the discovery of bioactive macrocycles. Chem. Rev. 119, 10360–10391 (2019).

Article  CAS  PubMed  Google Scholar 

Tsomaia, N. Peptide therapeutics: targeting the undruggable space. Eur. J. Med. Chem. 94, 459–470 (2015).

Article  CAS  PubMed  Google Scholar 

Malde, A. K., Hill, T. A., Iyer, A. & Fairlie, D. P. Crystal structures of protein-bound cyclic peptides. Chem. Rev. 119, 9861–9914 (2019).

Article  CAS  PubMed  Google Scholar 

White, C. J. & Yudin, A. K. Contemporary strategies for peptide macrocyclization. Nat. Chem. 3, 509–524 (2011).

Article  CAS  PubMed  Google Scholar 

Sarojini, V., Cameron, A. J., Varnava, K. G., Denny, W. A. & Sanjayan, G. Cyclic tetrapeptides from nature and design: a review of synthetic methodologies, structure, and function. Chem. Rev. 119, 10318–10359 (2019).

Article  CAS  PubMed  Google Scholar 

Du, L., Risinger, A. L., King, J. B., Powell, D. R. & Cichewicz, R. H. A potent HDAC inhibitor, 1-Alaninechlamydocin, from a Tolypocladium sp. induces G2/M cell cycle arrest and apoptosis in MIA PaCa-2 cells. J. Nat. Prod. 77, 1753–1757 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pérez-Victoria, I. et al. Isolation and structural elucidation of cyclic tetrapeptides from Onychocola sclerotica. J. Nat. Prod. 75, 1210–1214 (2012).

Steele, J. A., Uchytil, T. F., Durbin, R. D. & Rich, D. H. Chloroplast coupling factor 1: a species-specific receptor for tentoxin. Proc. Natl Acad. Sci. USA 73, 2245–2248 (1976).

Saito, T. et al. CJ-15, 208, a novel kappa opioid receptor antagonist from a fungus, Ctenomyces serratus ATCC15502. J.Antibiotics 55, 847–854 (2002).

Article  CAS  Google Scholar 

Chung, B. K. W., White, C. J., Scully, C. C. G. & Yudin, A. K. The reactivity and conformational control of cyclic tetrapeptides derived from aziridine-containing amino acids. Chem. Sci. 7, 6662–6668 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Skropeta, D., Jolliffe, K. A. & Turner, P. Pseudoprolines as removable turn inducers: tools for the cyclization of small peptides. J. Org. Chem. 69, 8804–8809 (2004).

Article  CAS  PubMed  Google Scholar 

Alcaro, M. C. et al. On-resin head-to-tail cyclization of cyclotetrapeptides: optimization of crucial parameters. J. Pept. Sci. 10, 218–228 (2004).

Article  CAS  PubMed  Google Scholar 

Meutermans, W. D. F. et al. Difficult macrocyclizations: new strategies for synthesizing highly strained cyclic tetrapeptides. Org. Lett. 5, 2711–2714 (2003).

Article  CAS  PubMed  Google Scholar 

Vidović, N. et al. Chloride-assisted peptide macrocyclization. Org. Lett. 22, 2129–2134 (2020).

Article  PubMed  Google Scholar 

Jing, X. & Jin, K. A gold mine for drug discovery: strategies to develop cyclic peptides into therapies. Med. Res. Rev. 40, 753–810 (2020).

Article  CAS  PubMed  Google Scholar 

Abdalla, M. A. Medicinal significance of naturally occurring cyclotetrapeptides. J. Nat. Med. 70, 708–720 (2016).

Article  CAS  PubMed  Google Scholar 

Li, Y.-H. et al. Putative nonribosomal peptide synthetase and cytochrome P450 genes responsible for tentoxin biosynthesis in Alternaria alternata ZJ33. Toxins 8, 234 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Witte, T. E., Villeneuve, N., Boddy, C. N. & Overy, D. P. Accessory chromosome-acquired secondary metabolism in plant pathogenic fungi: the evolution of biotrophs into host-specific pathogens. Front. Microbiol. 12, 664276 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Xu, H.-M. et al. Tataricins A and B, two novel cyclotetrapeptides from Aster tataricus, and their absolute configuration assignment. Tetrahedron Lett. 54, 1380–1383 (2013).

Article  CAS  Google Scholar 

Ma, G.-L. et al. Biosynthesis of tasikamides via pathway coupling and diazonium-mediated hydrazone formation. J. Am. Chem. Soc. 144, 1622–1633 (2022).

Article  CAS  PubMed  Google Scholar 

Kohli, R. M., Walsh, C. T. & Burkart, M. D. Biomimetic synthesis and optimization of cyclic peptide antibiotics. Nature 418, 658–661 (2002).

Article  CAS  PubMed  Google Scholar 

Trauger, J. W., Kohli, R. M., Mootz, H. D., Marahiel, M. A. & Walsh, C. T. Peptide cyclization catalysed by the thioesterase domain of tyrocidine synthetase. Nature 407, 215–218 (2000).

Article  CAS  PubMed  Google Scholar 

Horsman, M. E., Hari, T. P. A. & Boddy, C. N. Polyketide synthase and non-ribosomal peptide synthetase thioesterase selectivity: logic gate or a victim of fate? Nat. Prod. Rep. 33, 183–202 (2016).

Article  CAS  PubMed  Google Scholar 

Gao, X. et al. Cyclization of fungal nonribosomal peptides by a terminal condensation-like domain. Nat. Chem. Biol. 8, 823–830 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hoyer, K. M., Mahlert, C. & Marahiel, M. A. The iterative gramicidin S thioesterase catalyzes peptide ligation and cyclization. Chem. Biol. 14, 13–22 (2007).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kuranaga, T. et al. Total synthesis of the nonribosomal peptide surugamide B and identification of a new offloading cyclase family. Angew. Chem. 130, 9591–9595 (2018).

Article  Google Scholar 

Zhou, Y. et al. Investigation of penicillin binding protein (PBP)-like peptide cyclase and hydrolase in surugamide non-ribosomal peptide biosynthesis. Cell Chem. Biol. 26, 737–744.e4 (2019).

Article  CAS  PubMed  Google Scholar 

Thankachan, D. et al. A trans-acting cyclase offloading strategy for nonribosomal peptide synthetases. ACS Chem. Biol. 14, 845–849 (2019).

Article  CAS  PubMed  Google Scholar 

Matsuda, K. et al. SurE is a trans -acting thioesterase cyclizing two distinct non-ribosomal peptides. Org. Biomol. Chem. 17, 1058–1061 (2019).

Article  CAS  PubMed  Google Scholar 

Matsuda, K. et al. Heterochiral coupling in non-ribosomal peptide macrolactamization. Nat. Catal. 3, 507–515 (2020).

Article  CAS  Google Scholar 

Matsuda, K., Fujita, K. & Wakimoto, T. PenA, a penicillin-binding protein-type thioesterase specialized for small peptide cyclization. J. Ind. Microbiol. Biotechnol. 48, kuab023 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fazal, A., Wheeler, J., Webb, M. E. & Seipke, R. F. The N-terminal substrate specificity of the SurE peptide cyclase. Org. Biomol. Chem. 20, 7232–7235 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kobayashi, M., Fujita, K., Matsuda, K. & Wakimoto, T. Streamlined chemoenzymatic synthesis of cyclic peptides by non-ribosomal peptide cyclases. J. Am. Chem. Soc. 145, 3270–3275 (2023).

Article  CAS  PubMed  Google Scholar 

Fazal, A., Webb, M. E. & Seipke, R. F. The desotamide family of antibiotics. Antibiotics 9, 452 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Booth, T. J. et al. Bifurcation drives the evolution of assembly-line biosynthesis. Nat. Commun. 13, 3498 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mirdita, M. et al. ColabFold: making protein folding accessible to all. Nat. Methods 19, 679–682 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Son, S. et al. Genomics-driven discovery of chlorinated cyclic hexapeptides Ulleungmycins A and B from a Streptomyces species. J. Nat. Prod. 80, 3025–3031 (2017).

Article  CAS  PubMed  Google Scholar 

Gao, D.-W. et al. A polyketide cyclase that forms medium-ring lactones. J. Am. Chem. Soc. 143, 80–84 (2021).

Article  CAS  PubMed 

Comments (0)

No login
gif