Ren Y, Senarathna J, Grayson WL, Pathak AP (2022) State-of-the-art techniques for imaging the vascular microenvironment in craniofacial bone tissue engineering applications. Am J Physiol Cell Physiol 323(5):C1524–C1538. https://doi.org/10.1152/ajpcell.00195.2022
Article CAS PubMed PubMed Central Google Scholar
Grosso A, Burger MG, Lunger A, Schaefer DJ, Banfi A, Di Maggio N (2017) It takes two to tango: coupling of angiogenesis and osteogenesis for bone regeneration. Front Bioeng Biotechnol 5:68. https://doi.org/10.3389/fbioe.2017.00068
Article PubMed PubMed Central Google Scholar
Murphy MP, Quarto N, Longaker MT, Wan DC (2017) (*) Calvarial defects: cell-based reconstructive strategies in the murine model. Tissue Eng Part C Methods 23(12):971–981. https://doi.org/10.1089/ten.TEC.2017.0230
Article PubMed PubMed Central Google Scholar
Zuk PA (2008) Tissue engineering craniofacial defects with adult stem cells? Are we ready yet? Pediatr Res 63(5):478–486. https://doi.org/10.1203/PDR.0b013e31816bdf36
Hankenson KD, Dishowitz M, Gray C, Schenker M (2011) Angiogenesis in bone regeneration. Injury 42(6):556–561. https://doi.org/10.1016/j.injury.2011.03.035
Article PubMed PubMed Central Google Scholar
Matusin DP, Fontes-Pereira AJ, Rosa P, Barboza T, de Souza SAL, von Kruger MA, Pereira WCA (2018) Exploring cortical bone density through the ultrasound integrated reflection coefficient. Acta Ortop Bras 26(4):255–259. https://doi.org/10.1590/1413-785220182604177202
Article PubMed PubMed Central Google Scholar
Zhai Y, Schilling K, Wang T, El Khatib M, Vinogradov S, Brown EB, Zhang X (2021) Spatiotemporal blood vessel specification at the osteogenesis and angiogenesis interface of biomimetic nanofiber-enabled bone tissue engineering. Biomaterials 276:121041. https://doi.org/10.1016/j.biomaterials.2021.121041
Article CAS PubMed PubMed Central Google Scholar
Hillman EM (2007) Optical brain imaging in vivo: techniques and applications from animal to man. J Biomed Opt 12(5):051402. https://doi.org/10.1117/1.2789693
Senarathna J, Rege A, Li N, Thakor NV (2013) Laser Speckle Contrast Imaging: theory, instrumentation and applications. IEEE Rev Biomed Eng 6:99–110. https://doi.org/10.1109/RBME.2013.2243140
Bhargava A, Monteagudo B, Kushwaha P, Senarathna J, Ren Y, Riddle RC, Aggarwal M, Pathak AP (2022) VascuViz: a multimodality and multiscale imaging and visualization pipeline for vascular systems biology. Nat Methods 19(2):242–254. https://doi.org/10.1038/s41592-021-01363-5
Article CAS PubMed PubMed Central Google Scholar
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682. https://doi.org/10.1038/nmeth.2019
Article CAS PubMed Google Scholar
Thevenaz P, Ruttimann UE, Unser M (1998) A pyramid approach to subpixel registration based on intensity. IEEE Trans Image Process 7(1):27–41. https://doi.org/10.1109/83.650848
Article CAS PubMed Google Scholar
Ren Y, Senarathna J, Chu X, Grayson WL, Pathak AP (2022) Vascular-centric mapping of in vivo blood oxygen saturation in preclinical models. SSRN. https://doi.org/10.2139/ssrn.4251020
Mendez A, Rindone AN, Batra N, Abbasnia P, Senarathna J, Gil S, Hadjiabadi D, Grayson WL, Pathak AP (2018) Phenotyping the microvasculature in critical-sized calvarial defects via multimodal optical imaging. Tissue Eng Part C Methods 24(7):430–440. https://doi.org/10.1089/ten.TEC.2018.0090
Article CAS PubMed PubMed Central Google Scholar
Berg S, Kutra D, Kroeger T, Straehle CN, Kausler BX, Haubold C, Schiegg M, Ales J, Beier T, Rudy M, Eren K, Cervantes JI, Xu B, Beuttenmueller F, Wolny A, Zhang C, Koethe U, Hamprecht FA, Kreshuk A (2019) ilastik: interactive machine learning for (bio)image analysis. Nat Methods 16(12):1226–1232. https://doi.org/10.1038/s41592-019-0582-9
Article CAS PubMed Google Scholar
Claes L, Recknagel S, Ignatius A (2012) Fracture healing under healthy and inflammatory conditions. Nat Rev Rheumatol 8(3):133–143. https://doi.org/10.1038/nrrheum.2012.1
Article CAS PubMed Google Scholar
Claes L, Maurer-Klein N, Henke T, Gerngross H, Melnyk M, Augat P (2006) Moderate soft tissue trauma delays new bone formation only in the early phase of fracture healing. J Orthop Res 24(6):1178–1185. https://doi.org/10.1002/jor.20173
Schipani E, Maes C, Carmeliet G, Semenza GL (2009) Regulation of osteogenesis-angiogenesis coupling by HIFs and VEGF. J Bone Miner Res 24(8):1347–1353. https://doi.org/10.1359/jbmr.090602
Article CAS PubMed PubMed Central Google Scholar
Hendriks M, Ramasamy SK (2020) Blood vessels and vascular niches in bone development and physiological remodeling. Front Cell Dev Biol 8:602278. https://doi.org/10.3389/fcell.2020.602278
Article PubMed PubMed Central Google Scholar
Peng Y, Wu S, Li Y, Crane JL (2020) Type H blood vessels in bone modeling and remodeling. Theranostics 10(1):426–436. https://doi.org/10.7150/thno.34126
Article CAS PubMed PubMed Central Google Scholar
Kusumbe AP, Ramasamy SK, Adams RH (2014) Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone. Nature 507(7492):323–328. https://doi.org/10.1038/nature13145
Article CAS PubMed PubMed Central Google Scholar
Bouxsein ML, Boyd SK, Christiansen BA, Guldberg RE, Jepsen KJ, Muller R (2010) Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J Bone Miner Res 25(7):1468–1486. https://doi.org/10.1002/jbmr.141
Holstein JH, Becker SC, Fiedler M, Garcia P, Histing T, Klein M, Laschke MW, Corsten M, Pohlemann T, Menger MD (2011) Intravital microscopic studies of angiogenesis during bone defect healing in mice calvaria. Injury 42(8):765–771. https://doi.org/10.1016/j.injury.2010.11.020
Article CAS PubMed Google Scholar
Huang C, Ness VP, Yang X, Chen H, Luo J, Brown EB, Zhang X (2015) Spatiotemporal analyses of osteogenesis and angiogenesis via intravital imaging in cranial bone defect repair. J Bone Miner Res 30(7):1217–1230. https://doi.org/10.1002/jbmr.2460
Grundnes O, Reikeras O (1992) Blood flow and mechanical properties of healing bone. Femoral osteotomies studied in rats. Acta Orthop Scand 63(5):487–491. https://doi.org/10.3109/17453679209154720
Article CAS PubMed Google Scholar
Tomlinson RE, Silva MJ (2013) Skeletal blood flow in bone repair and maintenance. Bone Res 1(4):311–322. https://doi.org/10.4248/BR201304002
Article CAS PubMed PubMed Central Google Scholar
Trueta J (1974) Blood supply and the rate of healing of tibial fractures. Clin Orthop Relat Res 105:11–26
Ramasamy SK, Kusumbe AP, Schiller M, Zeuschner D, Bixel MG, Milia C, Gamrekelashvili J, Limbourg A, Medvinsky A, Santoro MM, Limbourg FP, Adams RH (2016) Blood flow controls bone vascular function and osteogenesis. Nat Commun 7:13601. https://doi.org/10.1038/ncomms13601
Article PubMed PubMed Central Google Scholar
Lu C, Saless N, Wang X, Sinha A, Decker S, Kazakia G, Hou H, Williams B, Swartz HM, Hunt TK, Miclau T, Marcucio RS (2013) The role of oxygen during fracture healing. Bone 52(1):220–229. https://doi.org/10.1016/j.bone.2012.09.037
Article CAS PubMed Google Scholar
Arnett TR, Gibbons DC, Utting JC, Orriss IR, Hoebertz A, Rosendaal M, Meghji S (2003) Hypoxia is a major stimulator of osteoclast formation and bone resorption. J Cell Physiol 196(1):2–8. https://doi.org/10.1002/jcp.10321
Article CAS PubMed Google Scholar
Schilling K, El Khatib M, Plunkett S, Xue J, Xia Y, Vinogradov SA, Brown E, Zhang X (2019) Electrospun fiber mesh for high-resolution measurements of oxygen tension in cranial bone defect repair. ACS Appl Mater Interfaces 11(37):33548–33558. https://doi.org/10.1021/acsami.9b08341
Article CAS PubMed PubMed Central Google Scholar
Suvarnapathaki S, Wu X, Zhang T, Nguyen MA, Goulopoulos AA, Wu B, Camci-Unal G (2022) Oxygen generating scaffolds regenerate critical size bone defects. Bioact Mater 13:64–81. https://doi.org/10.1016/j.bioactmat.2021.11.002
Article CAS PubMed Google Scholar
Touri M, Moztarzadeh F, Abu Osman NA, Dehghan MM, Brouki Milan P, Farzad-Mohajeri S, Mozafari M (2020) Oxygen-releasing scaffolds for accelerated bone regeneration. ACS Biomater Sci Eng 6(5):2985–2994. https://doi.org/10.1021/acsbiomaterials.9b01789
Comments (0)