Abreu WL, Rocha GM, Flores MSA et al (2020) Zoneamento Geoambiental a partir das Unidades de Conservação: subsídios para a Gestão Integrada da Zona Costeira Paraense - Brasil. Rev Bras Geogr 13:3042–3059
Aguiar WM, Melo GAR, Gaglianone MC (2014) Does forest phisiognomy affect the structure of orchid bee (Hymenoptera, Apidae, Euglossini) communities? A study in the Atlantic forest of Rio de Janeiro state, Brazil. Sociobiology 61:68–77. https://doi.org/10.13102/sociobiology.v61i1.68-77
Aguiar WM, Sofia SH, Melo GAR, Gaglianone MC (2015) Changes in Orchid Bee Communities Across Forest-Agroecosystem Boundaries in Brazilian Atlantic Forest Landscapes. Environ Entomol 44:1465–1471. https://doi.org/10.1093/ee/nvv130
Allen TFH, Starr TB (1982) Hierarchy perspective for ecological complexity. University of Chicago Press, Chicago
Allen L, Reeve R, Nousek-McGregor A et al (2019) Are orchid bees useful indicators of the impacts of human disturbance? EcolIndic 103:745–755. https://doi.org/10.1016/j.ecolind.2019.02.046
Amaral DD, Vieira IC, Salomão RP, Almeida SS, Costa Neto S V, Santos JUM, Carreira LM, Bastos MNC (2007) Campos e Florestas das Bacias dos Rios Atuá e Anajás, Ilha do Marajó, Pará. Ed. Belém: Museu Paraense Emilio Goeldi, 1. 110 p
Borges RC, Padovani K, Imperatriz-Fonseca VL, Giannini TC (2020) A dataset of multi-functional ecological traits of Brazilian bees. Sci Data 7. https://doi.org/10.1038/s41597-020-0461-3
Boscolo D, Tokumoto PM, Ferreira PA et al (2017) Positive responses of flower visiting bees to landscape heterogeneity depend on functional connectivity levels. Perspect Ecol Conserv 15:18–24. https://doi.org/10.1016/j.pecon.2017.03.002
Braga RC, Pimentel MAS (2019) Índice de Vulnerabilidade Diante da Variação do Nível do Mar na Amazônia: Estudo de Caso no Município de Salinópolis-Pará. Rev Bras Geogr 12:534–561. https://doi.org/10.26848/rbgf.v12.2.p534-561
Briggs HM, Perfecto I, Brosi BJ (2013) The role of the agricultural matrix: Coffee management and euglossine bee (Hymenoptera: Apidae: Euglossini) communities in Southern Mexico. Environ Entomol 42:1210–1217. https://doi.org/10.1603/EN13087
Article CAS PubMed Google Scholar
Brito TF, Phifer CC, Knowlton JL et al (2017) Forest reserves and riparian corridors help maintain orchid bee (Hymenoptera: Euglossini) communities in oil palm plantations in Brazil. Apidologie 48:575–587. https://doi.org/10.1007/s13592-017-0500-z
Brito TF, Santos ACS, Maués MM, Silveira OT (2019) Historical records of orchid bees (Apidae: Euglossini) in belém endemism center: Species list of 92 years sampling. Brazilian J Biol 79:263–272. https://doi.org/10.1590/1519-6984.180139
Brosi BJ (2009) The effects of forest fragmentation on euglossine bee communities (Hymenoptera: Apidae: Euglossini). Biol Conserv 142:414–423. https://doi.org/10.1016/j.biocon.2008.11.003
Brosi BJ, Daily GC, Shih TM et al (2008) The effects of forest fragmentation on bee communities in tropical countryside. J Appl Ecol 45:773–783. https://doi.org/10.1111/j.1365-2664.2007.01412.x
Campos LAO, Silveira FA, Oliveira ML et al (1989) Utilização de armadilhas para a captura de machos de Euglossini (Hymenoptera, Apoidea). Rev Bras Zool 6:621–626. https://doi.org/10.1590/s0101-81751989000400008
Cândido MEMB, Miranda NP, Morato FE (2021) Orchid bees in riparian and terra-firme forest fragments in na urban matrix in southwestern Brazilian Amazonia. Acta Amazonica 51:214–223. https://doi.org/10.1590/1809-4392202003781
Cândido MEMB, Morato EF, Storck-Tonon D et al (2018) Effects of fragments and landscape characteristics on the orchid bee richness (Apidae: Euglossini) in an urban matrix, southwestern Amazonia. J Insect Conserv 22:475–486. https://doi.org/10.1007/s10841-018-0075-7
Cariveau DP, Winfree R (2015) Causes of variation in wild bee responses to anthropogenic drivers. Curr Opin Insect Sci 10:104–109. https://doi.org/10.1016/j.cois.2015.05.004
Carneiro LS, Aguiar WM, Priante CF et al (2021) The Interplay Between Thematic Resolution, Forest Cover, and Heterogeneity for Explaining Euglossini Bees Community in an Agricultural Landscape. Front Ecol Evol 9. https://doi.org/10.3389/fevo.2021.628319
Carneiro LS, Ribeiro MC, Aguiar WM et al (2022) Orchid bees respond to landscape composition differently depending on the multiscale approach. Landsc Ecol 37:1587–1601. https://doi.org/10.1007/s10980-022-01442-8
Coutinho JGE, Angel-Coca C, Boscolo D, Viana BF (2020) Heterogeneous agroecosystems support high diversity and abundance of trap-nesting bees and wasp among tropical crops. Biotropica 52:991–1004. https://doi.org/10.1111/btp.12809
Cortopassi-Laurino M, Zillikens A, Steiner J (2009) Pollen sources of the orchid bee Euglossa annectans Dressler 1982 (Hymenoptera: Apidae, Euglossini) analyzed from larval provisions. Genet Mol Res 8:546–556. https://doi.org/10.4238/vol8-2kerr013
Article CAS PubMed Google Scholar
Costa CP, Francoy TM (2017) The impact of different phytophysiognomies on the composition of orchid bee communities (Hymenoptera: Apidae: Euglossini) in the atlantic forest in Brazil. Ann Entomol Soc Am 110:255–262. https://doi.org/10.1093/aesa/saw089
Crawley MJ (2012) The R Book. 2nd ed. John Wiley & Sons, Chichester, 977p
Cushman SA, Landguth EL (2010) Scale dependent inference in landscape genetics. Landsc Ecol 25:967–979
Duarte GT, Santos PM, Cornelissen TG, Ribeiro MC, Paglia AP (2018) The effects of landscape patterns on ecosystem services: meta-analyses of landscape services. Landsc. Ecol 33:1247–1257. https://doi.org/10.1007/s10980-018-0673-5
Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst 34:487–515. https://doi.org/10.1146/annurev.ecolsys.34.011802.132419
Fahrig L (2017) Ecological Responses to Habitat Fragmentation per Se. Annu Rev Ecol Evol Syst 48:1–23. https://doi.org/10.1146/annurev-ecolsys-110316-022612
Ferreira JVA, Storck-Tonon D, Silva RJ et al (2020) Effect of habitat amount and complexity on social wasps (Vespidae: Polistinae): implications for biological control. J Insect Conserv 24:613–624. https://doi.org/10.1007/s10841-020-00221-7
Fischer J, Lindenmayer David B (2007) Landscape modification and habitat fragmentation: a synthesis. Glob Ecol Biogeogr 16:265–280. https://doi.org/10.1111/j.1466-8238.2006.00287.x
Flores LMA, Zanette LRS, Boscolo D, Araújo FS (2019) Landscape structure effects on bee and wasp assemblages in a semiarid buffer zone. Landsc Online 76:1–17. https://doi.org/10.3097/LO.201976
Florian H (2020) Package DHARMa: residual diagnostics for hierarchical (multi level/mixed) regression models. (https://cran.rproject.org/web/packages/DHARMa/DHARMa.pdf). Accessed on 10 Set 2023.
Gestich CC, Arroyo-Rodríguez V, Ribeiro MC et al (2019) Unraveling the scales of effect of landscape structure on primate species richness and density of titi monkeys (Callicebus nigrifrons). Ecol Res 34:150–159. https://doi.org/10.1111/1440-1703.1009
Giannini TC, Alves DA, Alves R et al (2020) Unveiling the contribution of bee pollinators to Brazilian crops with implications for bee management. Apidologie 51:406–421. https://doi.org/10.1007/s13592-019-00727-3
Google Earth Engine. (2018) https://earthengine.google.com/. Acessado em 10/09/2019.
Gonçalves RB, Faria LRR (2021) In Euglossini we trust as ecological indicators: A reply to Añino et al. (2019). Sociobiology 68:1–8
Goulding M, Barthem BR, Ferreira E (2003) The Smithsonian atlas of the Amazon, Smithsonian Books, Washington D.C., USA, ISBN 1-588-34135-6
Graf LV, Schneiberg I, Gonçalves RB (2022) Bee functional groups respond to vegetation cover and landscape diversity in a Brazilian metropolis. Landsc Ecol 37:1075–1089. https://doi.org/10.1007/s10980-022-01430-y
Hedström I, Denzel A, Owens G (2006) Orchid bees as bio-indicators for organic coffee farms in Costa Rica: Does farm size affect their abundance? Rev Biol Trop 54:965–969. https://doi.org/10.15517/rbt.v54i3.14075
Hernandez-Perez E, Solano E (2015) Effects of habitat fragmentation on the diversity of epiphytic orchids from a montane forest of southern Mexico. J Trop Ecol 31:103–115. https://doi.org/10.1017/S0266467414000662
Hesselbarth MHK, Sciaini M, With KA et al (2019) landscapemetrics: an open-source R tool to calculate landscape metrics. Ecography (Cop) 42:1648–1657. https://doi.org/10.1111/ecog.04617
Huais PY (2018) multifit: an R function for multiscale analysis in landscape ecology. Landsc Ecol 33:1023–1028. https://doi.org/10.1007/s10980-018-0657-5
Hundera K, Aerts R, Beenhouwer MD et al (2013) Both forest fragmentation and coffee cultivation negatively affect epiphytic orchid diversity in Ethiopian moist evergreen Afromontane forests. Biol Conserv 159:285–291. https://doi.org/10.1016/j.biocon.2012.10.029
ICMBio (2023) Todas as Unidades de Conservação. https://www.gov.br/icmbio/pt-br/assuntos/biodiversidade/todas-as-unidades-de-conservacao. Accessed 10 Set 2023
Jackson HB, Fahrig L (2015) Are ecologists conducting research at the optimal scale? Glob Ecol Biogeogr 24:52–63. https://doi.org/10.1111/geb.12233
Kennedy CM, Lonsdorf E, Neel MC et al (2013) A global quantitative synthesis of local and landscape effects on wild bee pollinators in agroecosystems. Ecol Lett 16:584–599. https://doi.org/10.1111/ele.12082
Kremen C, Williams NM, Aizen MA et al (2007) Pollination and other ecosystem services produced by mobile organisms: A conceptual framework for the effects of land-use change. Ecol Lett 10:299–314. https://doi.org/10.1111/j.1461-0248.2007.01018.x
Laurance WF, Laurance SG, Ferreira LV, Rankin-de-Merona JM, Gascon C, Lovejoy TE (1997) Biomass collapse in Amazonian forest fragments. Science 278:1117–1118. https://doi.org/10.1126/science.278.5340.1117
Levin SA (1992) The problem of pattern and scale in Ecology: The Robert H. MacArthur Award lecture. Ecology 73:1943–1967
Machado T, Viana BF, Silva CI, Boscolo D (2020) How landscape composition affects pollen collection by stingless bees? Landsc Ecol 35:747–759. https://doi.org/10.1007/s10980-020-00977-y
Comments (0)