Abrar A, Sarwar S, Abbas M, Chaudhry H, Ghani N, Fatima A, Tahir A (2023) Identification of locally isolated entomopathogenic Fusarium species from the soil of Changa Manga Forest, Pakistan, and evaluation of their larvicidal efficacy against Aedes aegypti. Braz J Biol 83:e246230. https://doi.org/10.1590/1519-6984.246230
Agbangba CE, Aide ES, Honfo H, Kakai RG (2024) On the use of post-hoc tests in environmental and biological sciences: a critical review. Heliyon 10:e25131. https://doi.org/10.1016/j.heliyon.2024.e25131
Alkhaibari AM, Carolino AT, Yavasoglu SI, Maffeis T, Mattoso TC, Bull JC, Butt TM (2016) Metarhizium brunneum blastospore pathogenesis in Aedes aegypti larvae: attack on several fronts accelerates mortality. PLoS Pathog 12(7):e1005715. https://doi.org/10.1371/journal.ppat.1005715
Article CAS PubMed PubMed Central Google Scholar
Alkhaibari AM, Maffeis T, Bull JC, Butt TM (2018) Combined use of the entomopathogenic fungus, Metarhizium brunneum, and the mosquito predator, Toxorhynchites brevipalpis, for control of mosquito larvae: Is this a risky biocontrol strategy? J Invertebr Pathol 153:38–50. https://doi.org/10.1016/j.jip.2018.02.003
Article PubMed PubMed Central Google Scholar
Alves SB (1998) Fungos Entomopatogênicos Controle Microbiano De Insetos 2:289–381
Armstrong RA (2017) Recommendations for analysis of repeated-measures designs: testing and correcting for sphericity and use of manova and mixed model analysis. Ophthalmic Physiol Opt 37(5):585–593. https://doi.org/10.1111/opo.12399
Bakeman R (2005) Recommended effect size statistics for repeated measures designs. Behav Res Methods 37(3):379–384. https://doi.org/10.3758/bf03192707
Batool K, Alam I, Liu P, Shu Z, Zhao S, Yang W, Chen XG (2022) Recombinant mosquito densovirus with Bti toxins significantly improves pathogenicity against Aedes albopictus. Toxins 14(2):147. https://doi.org/10.3390/toxins14020147
Article CAS PubMed PubMed Central Google Scholar
Benelli G, Wilke AB, Bloomquist JR, Desneux N, Beier JC (2021) Overexposing mosquitoes to insecticides under global warming: A public health concern? Sci Total Environ 762:143069. https://doi.org/10.1016/j.scitotenv.2020.143069
Article CAS PubMed Google Scholar
Bischoff JF, Rehner SA, Humber RA (2006) Metarhizium frigidum sp. nov.: a cryptic species of M. anisopliae and a member of the M. flavoviride complex. Mycologia 98:737–745. https://doi.org/10.3852/mycologia.98.5.737
Article CAS PubMed Google Scholar
Bitencourt ROB, Farias FS, Freitas MC, Balduino CJR, Mesquita ES, Corval ARC, Angelo IC (2018) In vitro control of Aedes aegypti larvae using Beauveria bassiana. Int J Bioeng Life Sci 12(10):400–404. https://doi.org/10.5281/zenodo.1474973
Bitencourt ROB, dos Santos Mallet JR, Mesquita E, Golo PS, Fiorotti J, Bittencourt VREP, da Costa AI (2021) Larvicidal activity, route of interaction and ultrastructural changes in Aedes aegypti exposed to entomopathogenic fungi. Acta Trop 213:105732. https://doi.org/10.1016/j.actatropica.2020.105732
Bitencourt ROB, de Souza FF, Marchesini P, dos Santos-Mallet JR, Camargo MG, Bittencourt VREP, da Costa AI (2022) Entomopathogenic fungi and Schinus molle essential oil: The combination of two eco-friendly agents against Aedes aegypti larvae. J Invertebr Pathol 194:107827. https://doi.org/10.1016/j.jip.2022.107827
Blanca MJ, Arnau J, García-Castro FJ, Alarcón R, Bono R (2023) Repeated measures ANOVA and adjusted F-tests when sphericity is violated: which procedure is best? Front Psychol 14:1192453. https://doi.org/10.3389/fpsyg.2023.1192453
Article PubMed PubMed Central Google Scholar
Blanford S, Chan BH, Jenkins N, Sim D, Turner RJ, Read AF, Thomas MB (2005) Fungal pathogen reduces potential for malaria transmission. Science 308(5728):1638–1641. https://doi.org/10.1126/science.1108423
Article CAS PubMed Google Scholar
Boyce R, Lenhart A, Kroeger A, Velayudhan R, Roberts B, Horstick O (2013) Bacillus thuringiensis israelensis (Bti) for the control of dengue vectors: systematic literature review. Trop Med Int Health 18(5):564–577. https://doi.org/10.1111/tmi.12087
Article CAS PubMed Google Scholar
Butt TM, Greenfield BP, Greig C, Maffeis TG, Taylor JW, Piasecka J, Dudley E, Abdulla A, Dubovskiy IM, Garrido-Jurado I, Quesada-Moraga E, Penny MW, Eastwood DC (2013) Metarhizium anisopliae pathogenesis of mosquito larvae: a verdict of accidental death. PLoS ONE 8(12):e81686. https://doi.org/10.1371/journal.pone.0081686
Article CAS PubMed PubMed Central Google Scholar
Butt TM, Coates CJ, Dubovskiy IM, Ratcliffe NA (2016) Entomopathogenic fungi: new insights into host-pathogen interactions. Adv Genet 94:307–364. https://doi.org/10.1016/bs.adgen.2016.01.006
Article CAS PubMed Google Scholar
Cabral S, De Paula A, Samuels R, Da Fonseca R, Gomes S, Silva JR, Mury F (2020) Aedes aegypti (Diptera: Culicidae) immune responses with different feeding regimes following infection by the entomopathogenic fungus Metarhizium anisopliae. Insects 11(2):95. https://doi.org/10.3390/insects11020095
Article PubMed PubMed Central Google Scholar
Calma ML, Medina PMB (2020) Acute and chronic exposure of the holometabolous life cycle of Aedes aegypti L. to emerging contaminants naproxen and propylparaben. Environ Pollut 266(Pt 3):115275. https://doi.org/10.1016/j.envpol.2020.115275
Article CAS PubMed Google Scholar
Campos SS, Fernandes RS, Dos Santos AAC, de Miranda RM, Telleria EL, Ferreira-de-Brito A, Castro MG, Failoux AB, Bonaldo MC, Lourenço-de-Oliveira R (2017) Zika virus can be venereally transmitted between Aedes aegypti mosquitoes. Parasit Vectors 10(1):605. https://doi.org/10.1186/s13071-017-2543-4
Article CAS PubMed PubMed Central Google Scholar
Carolino AT, Gomes SA, Teodoro TBP, Mattoso TC, Samuels RI (2019) Aedes aegypti pupae are highly susceptible to infection by Metarhizium anisopliae blastospores. J Pure Appl Microbiol 13(3):1629–1634. https://doi.org/10.22207/JPAM.13.3.36
Consoli RAGB, Oliveira RLD (1994) Principais mosquitos de importância sanitária no Brasil. Editora Fiocruz, Rio de Janeiro
Davis J, Bibbs CS, Müller GC, Xue RD (2021) Evaluation of Bacillus thuringiensis israelensis as toxic sugar bait against adult Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus mosquitoes. J Vector Ecol 46(1):30–33. https://doi.org/10.52707/1081-1710-46.1.30
De Jesus CE, Reiskind MH (2016) The importance of male body size on sperm uptake and usage, and female fecundity in Aedes aegypti and Aedes albopictus. Parasit Vectors 9(1):447. https://doi.org/10.1186/s13071-016-1734-8
Article PubMed PubMed Central Google Scholar
De Paula AR, Silva LEI, Ribeiro A, da Silva GA, Silva CP, Butt TM, Samuels RI (2021) Metarhizium anisopliae blastospores are highly virulent to adult Aedes aegypti, an important arbovirus vector. Parasit Vectors 14(1):555. https://doi.org/10.1186/s13071-021-05055-z
Article PubMed PubMed Central Google Scholar
De Sousa NA, Rodrigues J, Arruda W, Humber RA, Luz C (2021) Development of Metarhizium humberi in Aedes aegypti eggs. J Invertebr Pathol 184:107648. https://doi.org/10.1016/j.jip.2021.107648
Deng S, Huang Q, Wei H, Zhou L, Yao L, Li D, Peng H (2019) Beauveria bassiana infection reduces the vectorial capacity of Aedes albopictus for the Zika virus. J Pest Sci 92:781–789. https://doi.org/10.1007/s10340-019-01081-0
Dong Y, Morton JC Jr, Ramirez JL, Souza-Neto JA, Dimopoulos G (2012) The entomopathogenic fungus Beauveria bassiana activate toll and JAK-STAT pathway-controlled effector genes and anti-dengue activity in Aedes aegypti. Insect Biochem Mol Biol 42(2):126–132. https://doi.org/10.1016/j.ibmb.2011.11.005
Article CAS PubMed Google Scholar
Fernandes RS, O’Connor O, Bersot MIL, Girault D, Dokunengo MR, Pocquet N, Lourenço-de-Oliveira R (2020) Vector competence of Aedes aegypti, Aedes albopictus and Culex quinquefasciatus from Brazil and New Caledonia for three Zika virus lineages. Pathogens 9(7):575. https://doi.org/10.3390/pathogens9070575
Comments (0)