In Vitro Assessment of Metarhizium Anisopliae Pathogenicity Against Aedes Aegypti Life Stages

Abrar A, Sarwar S, Abbas M, Chaudhry H, Ghani N, Fatima A, Tahir A (2023) Identification of locally isolated entomopathogenic Fusarium species from the soil of Changa Manga Forest, Pakistan, and evaluation of their larvicidal efficacy against Aedes aegypti. Braz J Biol 83:e246230. https://doi.org/10.1590/1519-6984.246230

Article  Google Scholar 

Agbangba CE, Aide ES, Honfo H, Kakai RG (2024) On the use of post-hoc tests in environmental and biological sciences: a critical review. Heliyon 10:e25131. https://doi.org/10.1016/j.heliyon.2024.e25131

Article  Google Scholar 

Alkhaibari AM, Carolino AT, Yavasoglu SI, Maffeis T, Mattoso TC, Bull JC, Butt TM (2016) Metarhizium brunneum blastospore pathogenesis in Aedes aegypti larvae: attack on several fronts accelerates mortality. PLoS Pathog 12(7):e1005715. https://doi.org/10.1371/journal.ppat.1005715

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alkhaibari AM, Maffeis T, Bull JC, Butt TM (2018) Combined use of the entomopathogenic fungus, Metarhizium brunneum, and the mosquito predator, Toxorhynchites brevipalpis, for control of mosquito larvae: Is this a risky biocontrol strategy? J Invertebr Pathol 153:38–50. https://doi.org/10.1016/j.jip.2018.02.003

Article  PubMed  PubMed Central  Google Scholar 

Alves SB (1998) Fungos Entomopatogênicos Controle Microbiano De Insetos 2:289–381

Google Scholar 

Armstrong RA (2017) Recommendations for analysis of repeated-measures designs: testing and correcting for sphericity and use of manova and mixed model analysis. Ophthalmic Physiol Opt 37(5):585–593. https://doi.org/10.1111/opo.12399

Article  PubMed  Google Scholar 

Bakeman R (2005) Recommended effect size statistics for repeated measures designs. Behav Res Methods 37(3):379–384. https://doi.org/10.3758/bf03192707

Article  PubMed  Google Scholar 

Batool K, Alam I, Liu P, Shu Z, Zhao S, Yang W, Chen XG (2022) Recombinant mosquito densovirus with Bti toxins significantly improves pathogenicity against Aedes albopictus. Toxins 14(2):147. https://doi.org/10.3390/toxins14020147

Article  CAS  PubMed  PubMed Central  Google Scholar 

Benelli G, Wilke AB, Bloomquist JR, Desneux N, Beier JC (2021) Overexposing mosquitoes to insecticides under global warming: A public health concern? Sci Total Environ 762:143069. https://doi.org/10.1016/j.scitotenv.2020.143069

Article  CAS  PubMed  Google Scholar 

Bischoff JF, Rehner SA, Humber RA (2006) Metarhizium frigidum sp. nov.: a cryptic species of M. anisopliae and a member of the M. flavoviride complex. Mycologia 98:737–745. https://doi.org/10.3852/mycologia.98.5.737

Article  CAS  PubMed  Google Scholar 

Bitencourt ROB, Farias FS, Freitas MC, Balduino CJR, Mesquita ES, Corval ARC, Angelo IC (2018) In vitro control of Aedes aegypti larvae using Beauveria bassiana. Int J Bioeng Life Sci 12(10):400–404. https://doi.org/10.5281/zenodo.1474973

Article  Google Scholar 

Bitencourt ROB, dos Santos Mallet JR, Mesquita E, Golo PS, Fiorotti J, Bittencourt VREP, da Costa AI (2021) Larvicidal activity, route of interaction and ultrastructural changes in Aedes aegypti exposed to entomopathogenic fungi. Acta Trop 213:105732. https://doi.org/10.1016/j.actatropica.2020.105732

Article  CAS  Google Scholar 

Bitencourt ROB, de Souza FF, Marchesini P, dos Santos-Mallet JR, Camargo MG, Bittencourt VREP, da Costa AI (2022) Entomopathogenic fungi and Schinus molle essential oil: The combination of two eco-friendly agents against Aedes aegypti larvae. J Invertebr Pathol 194:107827. https://doi.org/10.1016/j.jip.2022.107827

Article  CAS  Google Scholar 

Blanca MJ, Arnau J, García-Castro FJ, Alarcón R, Bono R (2023) Repeated measures ANOVA and adjusted F-tests when sphericity is violated: which procedure is best? Front Psychol 14:1192453. https://doi.org/10.3389/fpsyg.2023.1192453

Article  PubMed  PubMed Central  Google Scholar 

Blanford S, Chan BH, Jenkins N, Sim D, Turner RJ, Read AF, Thomas MB (2005) Fungal pathogen reduces potential for malaria transmission. Science 308(5728):1638–1641. https://doi.org/10.1126/science.1108423

Article  CAS  PubMed  Google Scholar 

Boyce R, Lenhart A, Kroeger A, Velayudhan R, Roberts B, Horstick O (2013) Bacillus thuringiensis israelensis (Bti) for the control of dengue vectors: systematic literature review. Trop Med Int Health 18(5):564–577. https://doi.org/10.1111/tmi.12087

Article  CAS  PubMed  Google Scholar 

Butt TM, Greenfield BP, Greig C, Maffeis TG, Taylor JW, Piasecka J, Dudley E, Abdulla A, Dubovskiy IM, Garrido-Jurado I, Quesada-Moraga E, Penny MW, Eastwood DC (2013) Metarhizium anisopliae pathogenesis of mosquito larvae: a verdict of accidental death. PLoS ONE 8(12):e81686. https://doi.org/10.1371/journal.pone.0081686

Article  CAS  PubMed  PubMed Central  Google Scholar 

Butt TM, Coates CJ, Dubovskiy IM, Ratcliffe NA (2016) Entomopathogenic fungi: new insights into host-pathogen interactions. Adv Genet 94:307–364. https://doi.org/10.1016/bs.adgen.2016.01.006

Article  CAS  PubMed  Google Scholar 

Cabral S, De Paula A, Samuels R, Da Fonseca R, Gomes S, Silva JR, Mury F (2020) Aedes aegypti (Diptera: Culicidae) immune responses with different feeding regimes following infection by the entomopathogenic fungus Metarhizium anisopliae. Insects 11(2):95. https://doi.org/10.3390/insects11020095

Article  PubMed  PubMed Central  Google Scholar 

Calma ML, Medina PMB (2020) Acute and chronic exposure of the holometabolous life cycle of Aedes aegypti L. to emerging contaminants naproxen and propylparaben. Environ Pollut 266(Pt 3):115275. https://doi.org/10.1016/j.envpol.2020.115275

Article  CAS  PubMed  Google Scholar 

Campos SS, Fernandes RS, Dos Santos AAC, de Miranda RM, Telleria EL, Ferreira-de-Brito A, Castro MG, Failoux AB, Bonaldo MC, Lourenço-de-Oliveira R (2017) Zika virus can be venereally transmitted between Aedes aegypti mosquitoes. Parasit Vectors 10(1):605. https://doi.org/10.1186/s13071-017-2543-4

Article  CAS  PubMed  PubMed Central  Google Scholar 

Carolino AT, Gomes SA, Teodoro TBP, Mattoso TC, Samuels RI (2019) Aedes aegypti pupae are highly susceptible to infection by Metarhizium anisopliae blastospores. J Pure Appl Microbiol 13(3):1629–1634. https://doi.org/10.22207/JPAM.13.3.36

Article  CAS  Google Scholar 

Consoli RAGB, Oliveira RLD (1994) Principais mosquitos de importância sanitária no Brasil. Editora Fiocruz, Rio de Janeiro

Book  Google Scholar 

Davis J, Bibbs CS, Müller GC, Xue RD (2021) Evaluation of Bacillus thuringiensis israelensis as toxic sugar bait against adult Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus mosquitoes. J Vector Ecol 46(1):30–33. https://doi.org/10.52707/1081-1710-46.1.30

Article  PubMed  Google Scholar 

De Jesus CE, Reiskind MH (2016) The importance of male body size on sperm uptake and usage, and female fecundity in Aedes aegypti and Aedes albopictus. Parasit Vectors 9(1):447. https://doi.org/10.1186/s13071-016-1734-8

Article  PubMed  PubMed Central  Google Scholar 

De Paula AR, Silva LEI, Ribeiro A, da Silva GA, Silva CP, Butt TM, Samuels RI (2021) Metarhizium anisopliae blastospores are highly virulent to adult Aedes aegypti, an important arbovirus vector. Parasit Vectors 14(1):555. https://doi.org/10.1186/s13071-021-05055-z

Article  PubMed  PubMed Central  Google Scholar 

De Sousa NA, Rodrigues J, Arruda W, Humber RA, Luz C (2021) Development of Metarhizium humberi in Aedes aegypti eggs. J Invertebr Pathol 184:107648. https://doi.org/10.1016/j.jip.2021.107648

Article  PubMed  Google Scholar 

Deng S, Huang Q, Wei H, Zhou L, Yao L, Li D, Peng H (2019) Beauveria bassiana infection reduces the vectorial capacity of Aedes albopictus for the Zika virus. J Pest Sci 92:781–789. https://doi.org/10.1007/s10340-019-01081-0

Article  Google Scholar 

Dong Y, Morton JC Jr, Ramirez JL, Souza-Neto JA, Dimopoulos G (2012) The entomopathogenic fungus Beauveria bassiana activate toll and JAK-STAT pathway-controlled effector genes and anti-dengue activity in Aedes aegypti. Insect Biochem Mol Biol 42(2):126–132. https://doi.org/10.1016/j.ibmb.2011.11.005

Article  CAS  PubMed  Google Scholar 

Fernandes RS, O’Connor O, Bersot MIL, Girault D, Dokunengo MR, Pocquet N, Lourenço-de-Oliveira R (2020) Vector competence of Aedes aegypti, Aedes albopictus and Culex quinquefasciatus from Brazil and New Caledonia for three Zika virus lineages. Pathogens 9(7):575. https://doi.org/10.3390/pathogens9070575

Comments (0)

No login
gif