Barbier, A. J., Jiang, A. Y., Zhang, P., Wooster, R. & Anderson, D. G. The clinical progress of mRNA vaccines and immunotherapies. Nat. Biotechnol. 40, 840–854 (2022).
Article CAS PubMed Google Scholar
Lindsay, K. E. et al. Visualization of early events in mRNA vaccine delivery in non-human primates via PET–CT and near-infrared imaging. Nat. Biomed. Eng. 3, 371–380 (2019).
Article CAS PubMed Google Scholar
Vavilis, T. et al. mRNA in the context of protein replacement therapy. Pharmaceutics 15, 166 (2023).
Article CAS PubMed PubMed Central Google Scholar
Meyer, R. A., Neshat, S. Y., Green, J. J., Santos, J. L. & Tuesca, A. D. Targeting strategies for mRNA delivery. Mater. Today Adv. 14, 100240 (2022).
Paunovska, K., Loughrey, D. & Dahlman, J. E. Drug delivery systems for RNA therapeutics. Nat. Rev. Genet. 23, 265–280 (2022).
Article CAS PubMed PubMed Central Google Scholar
Morris, C., Cluet, D. & Ricci, E. P. Ribosome dynamics and mRNA turnover, a complex relationship under constant cellular scrutiny. Wiley Iinterdiscip. Rev. RNA 12, e1658 (2021).
Article CAS PubMed Google Scholar
Mercier, B. C. et al. Translation-dependent and independent mRNA decay occur through mutually exclusive pathways that are defined by ribosome density during T cell activation. Preprint at bioRxiv https://doi.org/10.1101/2020.10.16.341222 (2020).
Villanueva, J. C. How Many Atoms Are There in the Universe? Universe Today https://www.universetoday.com/36302/atoms-in-the-universe/ (2009).
Hanson, G. & Coller, J. Codon optimality, bias and usage in translation and mRNA decay. Nat. Rev. Mol. Cell Biol. 19, 20–30 (2017).
Article PubMed PubMed Central Google Scholar
Hanson, G., Alhusaini, N., Morris, N., Sweet, T. & Coller, J. Translation elongation and mRNA stability are coupled through the ribosomal A-site. RNA 24, 1377–1389 (2018).
Article CAS PubMed PubMed Central Google Scholar
Bae, H. & Coller, J. Codon optimality-mediated mRNA degradation: linking translational elongation to mRNA stability. Mol. Cell 82, 1467–1476 (2022).
Article CAS PubMed PubMed Central Google Scholar
Zolotukhin, S., Potter, M., Hauswirth, W. W., Guy, J. & Muzyczka, N. A ‘humanized’ green fluorescent protein cDNA adapted for high-level expression in mammalian cells. J. Virol. 70, 4646–4654 (1996).
Article CAS PubMed PubMed Central Google Scholar
Kudla, G., Lipinski, L., Caffin, F., Helwak, A. & Zylicz, M. High guanine and cytosine content increases mRNA levels in mammalian cells. PLoS Biol. 4, e180 (2006).
Article PubMed PubMed Central Google Scholar
Mordstein, C. et al. Codon usage and splicing jointly influence mRNA localization. Cell Syst. 10, 351–362.e8 (2020).
Article CAS PubMed PubMed Central Google Scholar
Thess, A. et al. Sequence-engineered mRNA without chemical nucleoside modifications enables an effective protein therapy in large animals. Mol. Ther. 23, 1456–1464 (2015).
Article CAS PubMed PubMed Central Google Scholar
Parvathy, S. T., Udayasuriyan, V. & Bhadana, V. Codon usage bias. Mol. Biol. Rep. 49, 539–565 (2022).
Article CAS PubMed Google Scholar
Sharp, P. M. & Li, W. H. The codon adaptation index—a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res. 15, 1281–1295 (1987).
Article CAS PubMed PubMed Central Google Scholar
Reis, M., dos, Savva, R. & Wernisch, L. Solving the riddle of codon usage preferences: a test for translational selection. Nucleic Acids Res. 32, 5036–5044 (2004).
Article PubMed PubMed Central Google Scholar
Forrest, M. E. et al. Codon and amino acid content are associated with mRNA stability in mammalian cells. PLoS ONE 15, e0228730 (2020).
Article CAS PubMed PubMed Central Google Scholar
Dittmar, K. A., Goodenbour, J. M. & Pan, T. Tissue-specific differences in human transfer RNA expression. PLoS Genet. 2, e221 (2006).
Article PubMed PubMed Central Google Scholar
Pinkard, O., McFarland, S., Sweet, T. & Coller, J. Quantitative tRNA-sequencing uncovers metazoan tissue-specific tRNA regulation. Nat. Commun. 11, 4104 (2020).
Article CAS PubMed PubMed Central Google Scholar
Tuller, T. et al. An evolutionarily conserved mechanism for controlling the efficiency of protein translation. Cell 141, 344–354 (2010).
Article CAS PubMed Google Scholar
Sejour, R., Leatherwood, J., Yurovsky, A. & Futcher, B. No ramp needed: spandrels, statistics, and a slippery slope. eLife 12, RP89656 (2023).
Mortimer, S. A., Kidwell, M. A. & Doudna, J. A. Insights into RNA structure and function from genome-wide studies. Nat. Rev. Genet. 15, 469–479 (2014).
Article CAS PubMed Google Scholar
Leppek, K. et al. Combinatorial optimization of mRNA structure, stability, and translation for RNA-based therapeutics. Nat. Commun. 13, 1536 (2022).
Article CAS PubMed PubMed Central Google Scholar
Zhang, H. et al. Algorithm for optimized mRNA design improves stability and immunogenicity. Nature 621, 396–403 (2023).
Article CAS PubMed PubMed Central Google Scholar
Tanzer, A., Hofacker, I. L. & Lorenz, R. RNA modifications in structure prediction – status quo and future challenges. Methods 156, 32–39 (2019).
Article CAS PubMed Google Scholar
Mauger, D. M. et al. mRNA structure regulates protein expression through changes in functional half-life. Proc. Natl Acad. Sci. USA 116, 24075–24083 (2019).
Article CAS PubMed PubMed Central Google Scholar
Kierzek, E. et al. Secondary structure prediction for RNA sequences including N6-methyladenosine. Nat. Commun. 13, 1271 (2022).
Article CAS PubMed PubMed Central Google Scholar
Turner, D. H., Sugimoto, N. & Freier, S. M. RNA structure prediction. Annu. Rev. Biophys. Biophys. Chem. 17, 167–192 (1988).
Article CAS PubMed Google Scholar
Turner, D. H. Thermodynamics of base pairing. Curr. Opin. Struct. Biol. 6, 299–304 (1996).
Article CAS PubMed Google Scholar
Pleij, C. W., Rietveld, K. & Bosch, L. A new principle of RNA folding based on pseudoknotting. Nucleic Acids Res. 13, 1717–1731 (1985).
Article CAS PubMed PubMed Central Google Scholar
Zuber, J., Schroeder, S. J., Sun, H., Turner, D. H. & Mathews, D. H. Nearest neighbor rules for RNA helix folding thermodynamics: improved end effects. Nucleic Acids Res. 50, 5251–5262 (2022).
Article CAS PubMed PubMed Central Google Scholar
Xia, T. et al. Thermodynamic parameters for an expanded nearest-neighbor model for formation of RNA duplexes with Watson−Crick base pairs. Biochemistry 37, 14719–14735 (1998).
Article CAS PubMed Google Scholar
Andronescu, M., Condon, A., Turner, D. H. & Mathews, D. H. The determination of RNA folding nearest neighbor parameters. Methods Mol. Biol. 1097, 45–70 (2014).
Article CAS PubMed Google Scholar
Raden, M., Mohamed, M. M., Ali, S. M. & Backofen, R. Interactive implementations of thermodynamics-based RNA structure and RNA–RNA interaction prediction approaches for example-driven teaching. PLOS Comput. Biol. 14, e1006341 (2018).
Article PubMed PubMed Central Google Scholar
Hofacker, I. L., Schuster, P. & Stadler, P. F. Combinatorics of RNA secondary structures. Discret. Appl. Math. 88, 207–237 (1998).
Mathews, D. H. Using an RNA secondary structure partition function to determine confidence in base pairs predicted by free energy minimization. RNA 10, 1178–1190 (2004).
Comments (0)