RNAi-based drug design: considerations and future directions

Morrissey, D. V. et al. Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Nat. Biotechnol. 23, 1002–1007 (2005).

CAS  PubMed  Google Scholar 

Zimmermann, T. S. et al. RNAi-mediated gene silencing in non-human primates. Nature 441, 111–114 (2006).

CAS  PubMed  Google Scholar 

Frank-Kamenetsky, M. et al. Therapeutic RNAi targeting PCSK9 acutely lowers plasma cholesterol in rodents and LDL cholesterol in nonhuman primates. Proc. Natl Acad. Sci. USA 105, 11915–11920 (2008).

CAS  PubMed  PubMed Central  Google Scholar 

Akinc, A. et al. Development of lipidoid–siRNA formulations for systemic delivery to the liver. Mol. Ther. 17, 872–879 (2009).

CAS  PubMed  PubMed Central  Google Scholar 

Whitehead, K. A., Langer, R. & Anderson, D. G. Knocking down barriers: advances in siRNA delivery. Nat. Rev. Drug. Discov. 8, 129–138 (2009).

CAS  PubMed  PubMed Central  Google Scholar 

Tao, W. et al. Noninvasive imaging of lipid nanoparticle–mediated systemic delivery of small-interfering RNA to the liver. Mol. Ther. 18, 1657–1666 (2010).

CAS  PubMed  PubMed Central  Google Scholar 

Semple, S. C. et al. Rational design of cationic lipids for siRNA delivery. Nat. Biotechnol. 28, 172–176 (2010).

CAS  PubMed  Google Scholar 

Coelho, T. et al. Safety and efficacy of RNAi therapy for transthyretin amyloidosis. N. Engl. J. Med. 369, 819–829 (2013).

CAS  PubMed  Google Scholar 

Hoy, S. M. Patisiran: first global approval. Drugs 78, 1625–1631 (2018).

CAS  PubMed  Google Scholar 

Nair, J. K. et al. Multivalent N-acetylgalactosamine-conjugated siRNA localizes in hepatocytes and elicits robust RNAi-mediated gene silencing. J. Am. Chem. Soc. 136, 16958–16961 (2014). This article reports the use of GalNAc conjugates for targeted delivery of siRNA to hepatocytes.

CAS  PubMed  Google Scholar 

Zimmermann, T. S. et al. Clinical proof of concept for a novel hepatocyte-targeting GalNAc-siRNA conjugate. Mol. Ther. 25, 71–78 (2017).

CAS  PubMed  PubMed Central  Google Scholar 

Garber, K. Alnylam terminates revusiran program, stock plunges. Nat. Biotechnol. 34, 1213–1214 (2016).

CAS  PubMed  Google Scholar 

Maraganore, J. Reflections on Alnylam. Nat. Biotechnol. 40, 641–650 (2022).

CAS  PubMed  Google Scholar 

Egli, M. & Manoharan, M. Chemistry, structure and function of approved oligonucleotide therapeutics. Nucleic Acids Res. 51, 2529–2573 (2023). This article provides a comprehensive review on the chemistry and function of approved oligonucleotide-based drugs by early 2023.

CAS  PubMed  PubMed Central  Google Scholar 

Setten, R. L., Rossi, J. J. & Han, S.-P. The current state and future directions of RNAi-based therapeutics. Nat. Rev. Drug Discov. 18, 421–446 (2019). This review provides an excellent resource for understanding the basic biology of RNAi therapeutics.

CAS  PubMed  Google Scholar 

Dowdy, S. F. Overcoming cellular barriers for RNA therapeutics. Nat. Biotechnol. 35, 222–229 (2017).

CAS  PubMed  Google Scholar 

Dowdy, S. F., Setten, R. L., Cui, X.-S. & Jadhav, S. G. Delivery of RNA therapeutics: the great endosomal escape! Nucleic Acid. Ther. 32, 361–368 (2022). References 16 and 17 discuss the fundamental challenges of cellular uptake and endosomal escape of siRNAs.

CAS  PubMed  PubMed Central  Google Scholar 

Layzer, J. M. et al. In vivo activity of nuclease-resistant siRNAs. RNA 10, 766–771 (2004).

CAS  PubMed  PubMed Central  Google Scholar 

Gantier, M. P. & Williams, B. R. G. The response of mammalian cells to double-stranded RNA. Cytokine Growth Factor Rev. 18, 363–371 (2007).

CAS  PubMed  PubMed Central  Google Scholar 

Scacheri, P. C. et al. Short interfering RNAs can induce unexpected and divergent changes in the levels of untargeted proteins in mammalian cells. Proc. Natl Acad. Sci. USA 101, 1892–1897 (2004).

CAS  PubMed  PubMed Central  Google Scholar 

Khvorova, A. & Watts, J. K. The chemical evolution of oligonucleotide therapies of clinical utility. Nat. Biotechnol. 35, 238–248 (2017). This review discusses chemical modifications that evolve ASO and siRNA therapeutics towards clinical application.

CAS  PubMed  PubMed Central  Google Scholar 

De Smet, M. D., Meenken, C. & Van Den Horn, G. J. Fomivirsen—a phosphorothioate oligonucleotide for the treatment of CMV retinitis. Ocul. Immunol. Inflamm. 7, 189–198 (1999).

PubMed  Google Scholar 

Kurreck, J. Antisense technologies. Improvement through novel chemical modifications. Eur. J. Biochem. 270, 1628–1644 (2003).

CAS  PubMed  Google Scholar 

Lee, J.-H. et al. A therapeutic aptamer inhibits angiogenesis by specifically targeting the heparin binding domain of VEGF165. Proc. Natl Acad. Sci. USA 102, 18902–18907 (2005).

CAS  PubMed  PubMed Central  Google Scholar 

Brown, C. R. et al. Investigating the pharmacodynamic durability of GalNAc–siRNA conjugates. Nucleic Acids Res. 48, 11827–11844 (2020).

CAS  PubMed  PubMed Central  Google Scholar 

Hassler, M. R. et al. Comparison of partially and fully chemically-modified siRNA in conjugate-mediated delivery in vivo. Nucleic Acids Res. 46, 2185–2196 (2018). This article demonstrates that full chemical modification is essential for improving siRNA in vivo efficacy.

CAS  PubMed  PubMed Central  Google Scholar 

Allerson, C. R. et al. Fully 2′-modified oligonucleotide duplexes with improved in vitro potency and stability compared to unmodified small interfering RNA. J. Med. Chem. 48, 901–904 (2005). This paper compares the potency of fully 2′-modified siRNA with unmodified siRNA.

CAS  PubMed  Google Scholar 

Manoharan, M. et al. Unique gene-silencing and structural properties of 2′-fluoro-modified siRNAs. Angew. Chem. Int. Ed. 50, 2284–2288 (2011).

CAS  Google Scholar 

Jahns, H. et al. Stereochemical bias introduced during RNA synthesis modulates the activity of phosphorothioate siRNAs. Nat. Commun. 6, 6317 (2015).

CAS  PubMed  Google Scholar 

Schirle, N. T., Sheu-Gruttadauria, J. & MacRae, I. J. Structural basis for microRNA targeting. Science 346, 608–613 (2014).

CAS  PubMed  PubMed Central  Google Scholar 

Manoharan, M. 2′-Carbohydrate modifications in antisense oligonucleotide therapy: importance of conformation, configuration and conjugation. Biochim. Biophys. Acta Gene Struct. Expr. 1489, 117–130 (1999).

CAS  Google Scholar 

Foster, D. J. et al. Advanced siRNA designs further improve in vivo performance of GalNAc-siRNA conjugates. Mol. Ther. 26, 708–717 (2018).

CAS  PubMed  PubMed Central  Google Scholar 

Blidner, R. A., Hammer, R. P., Lopez, M. J., Robinson, S. O. & Monroe, W. T. Fully 2′-deoxy-2′-fluoro substituted nucleic acids induce RNA interference in mammalian cell culture. Chem. Biol. Drug Des. 70, 113–122 (2007).

CAS  PubMed  Google Scholar 

Janas, M. M. et al. Safety evaluation of 2′-deoxy-2′-fluoro nucleotides in GalNAc–siRNA conjugates. Nucleic Acids Res. 47, 3306–3320 (2019). This article investigates the safety of 2′-F nucleotides in GalNAc–siRNAs.

CAS  PubMed  PubMed Central  Google Scholar 

Schirle, N. T. & MacRae, I. J. The crystal structure of human argonaute2. Science 336, 1037–1040 (2012).

CAS  PubMed  PubMed Central  Google Scholar 

Davis, S. M. et al. Chemical optimization of siRNA for safe and efficient silencing of placental sFLT1. Mol. Ther. Nucleic Acids 29, 135–149 (2022).

CAS  PubMed  PubMed Central  Google Scholar 

Grimm, D. et al. Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature 441, 537–541 (2006).

CAS  PubMed  Google Scholar 

Nair, J. K. et al. Impact of enhanced metabolic stability on pharmacokinetics and pharmacodynamics of GalNAc-siRNA conjugates. Nucleic Acids Res. 45, 10969–10977 (2017).

CAS  PubMed  PubMed Central  Google Scholar 

Judge, D. P. et al. Phase 3 multicenter study of revusiran in patients with hereditary transthyretin-mediated (hATTR) amyloidosis with cardiomyopathy (ENDEAVOUR). Cardiovasc. Drugs Ther. 34, 357–370 (2020).

CAS  PubMed  PubMed Central  Google Scholar 

Biscans, A. et al. The chemical structure and phosphorothioate content of hydrophobically modified siRNAs impact extrahepatic distribution and efficacy. Nucleic Acids Res. 48, 7665–7680 (2020).

CAS  PubMed  PubMed Central  Google Scholar 

Ly, S., Echeverria, D., Sousa, J. & Khvorova, A. Single-stranded phosphorothioated regions enhance cellular uptake of cholesterol-conjugated siRNA but not silencing efficacy. Mol. Ther. Nucleic Acids 21, 991–1005 (2020).

CAS  PubMed  PubMed Central  Google Scholar 

Wang, Y., Sheng, G., Juranek, S., Tuschl, T. & Patel, D. J. Structure of the guide-strand-containing argonaute silencing complex. Nature 456, 209–213 (2008).

CAS  PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif