Tinajero MG, Malik VS. An update on the epidemiology of type 2 diabetes: a global perspective. Endocrinol Metab Clin North Am. 2021;50(3):337–55.
Stumvoll M, Goldstein BJ, van Haeften TW. Type 2 diabetes: principles of pathogenesis and therapy. Lancet (London England). 2005;365(9467):1333–46.
Article CAS PubMed Google Scholar
Brunton S. Pathophysiology of type 2 diabetes: the evolution of our understanding. J Fam Pract. 2016;65(4 Suppl):supp_az_0416.
Galicia-Garcia U, Benito-Vicente A, Jebari S, Larrea-Sebal A, Siddiqi H, Uribe KB, Ostolaza H, Martín C. Pathophysiology of type 2 diabetes mellitus. Int J Mol Sci. 2020;21:17.
Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N, Colagiuri S, Guariguata L, Motala AA, Ogurtsova K, Shaw JE, Bright D, Williams R. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the International Diabetes Federation Diabetes Atlas, 9(th) edition. Diabetes Res Clin Pract. 2019;157:107843.
Herrera-Gómez F, Asensio-González M, González-López A, Álvarez FJ. Effects of intensive control of glycemia on clinical kidney outcomes in type 2 Diabetes patients compared with Standard Control: a Meta-analysis. Front Pharmacol. 2017;8:845.
Article PubMed PubMed Central Google Scholar
Newman JD, Schwartzbard AZ, Weintraub HS, Goldberg IJ, Berger JS. Primary prevention of cardiovascular disease in diabetes mellitus. J Am Coll Cardiol. 2017;70(7):883–93.
Article PubMed PubMed Central Google Scholar
Quattrocchi E, Goldberg T, Marzella N. Management of type 2 diabetes: consensus of diabetes organizations. Drugs Context. 2020;9:212607.
Article PubMed PubMed Central Google Scholar
Ríos JL, Francini F, Schinella GR. Natural products for the treatment of type 2 diabetes mellitus. Planta Med. 2015;81(12–13):975–94.
Xu L, Li Y, Dai Y, Peng J. Natural products for the treatment of type 2 Diabetes Mellitus: Pharmacology and mechanisms. Pharmacol Res. 2018;130:451–65.
Article CAS PubMed Google Scholar
Katsura H, Tsukiyama RI, Suzuki A, Kobayashi M. In vitro antimicrobial activities of bakuchiol against oral microorganisms. Antimicrob Agents Chemother. 2001;45(11):3009–13.
Article CAS PubMed PubMed Central Google Scholar
Lin J, Yao HJ, Li RY. Bakuchiol inhibits cell proliferation and induces apoptosis and cell cycle arrest in SGC-7901 human gastric cancer cells. J BUON. 2016;21(4):889–94.
Kumar A, Sawhney G, Kumar Nagar R, Chauhan N, Gupta N, Kaul A, Ahmed Z, Sangwan PL, Satheesh Kumar P, Yadav G. Evaluation of the immunomodulatory and anti-inflammatory activity of Bakuchiol using RAW 264.7 macrophage cell lines and in animal models stimulated by lipopolysaccharide (LPS). Int Immunopharmacol. 2021;91:107264.
Article CAS PubMed Google Scholar
Zhao G, Zang SY, Zheng XW, Zhang XH, Guo LH. Bakuchiol analogs inhibit monoamine transporters and regulate monoaminergic functions. Biochem Pharmacol. 2008;75(9):1835–47.
Article CAS PubMed Google Scholar
Krenisky JM, Luo J, Reed MJ, Carney JR. Isolation and antihyperglycemic activity of bakuchiol from Otholobium pubescens (Fabaceae), a peruvian medicinal plant used for the treatment of diabetes. Biol Pharm Bull. 1999;22(10):1137–40.
Article CAS PubMed Google Scholar
Ma W, Guo W, Shang F, Li Y, Li W, Liu J, Ma C, Teng J. Bakuchiol alleviates hyperglycemia-induced diabetic cardiomyopathy by reducing myocardial oxidative stress via activating the SIRT1/Nrf2 signaling pathway. Oxidative Med Cell Longev. 2020;2020:3732718.
Madrid Villegas A, Díaz Peralta K, González Tapia C, Catalán Marín K, Espinoza Catalán L. Antiphytopathogenic activity of Psoralea glandulosa (Fabaceae) against Botrytis Cinerea and Phytophthora Cinnamomi. Nat Prod Res. 2015;29(6):586–8.
Suárez AI, Thu ZM, Ramírez J, León D, Cartuche L, Armijos C, Vidari G. Main constituents and antidiabetic properties of Otholobium Mexicanum. Nat Prod Commun. 2017;12(4):533–5.
Li S, Zhang B. Traditional Chinese medicine network pharmacology: theory, methodology and application. Chin J Nat Med. 2013;11(2):110–20.
Yuan Z, Pan Y, Leng T, Chu Y, Zhang H, Ma J, Ma X. Progress and prospects of research ideas and methods in the network pharmacology of traditional Chinese medicine. J Pharm Pharm Sci. 2022;25:218–26.
Liu C, Liu L, Li J, Zhang Y, Meng DL. Virtual screening of active compounds from jasminum lanceolarium and potential targets against primary dysmenorrhea based on network pharmacology. Nat Prod Res. 2021;35(24):5853–6.
Article CAS PubMed Google Scholar
Chin CH, Chen SH, Wu HH, Ho CW, Ko MT, Lin CY. cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst Biol. 2014;8(Suppl 4):11.
Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27–30.
Article CAS PubMed PubMed Central Google Scholar
Kanehisa M, Furumichi M, Sato Y, Kawashima M, Ishiguro-Watanabe M. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 2023;51(D1):D587-d592.
Article CAS PubMed Google Scholar
Yang Z, Huang W, Zhang J, Xie M, Wang X. Baicalein improves glucose metabolism in insulin resistant HepG2 cells. Eur J Pharmacol. 2019;854:187–93.
Article CAS PubMed Google Scholar
Zhou YJ, Xu N, Zhang XC, Zhu YY, Liu SW, Chang YN. Chrysin improves glucose and lipid metabolism disorders by regulating the AMPK/PI3K/AKT signaling pathway in insulin-resistant HepG2 cells and HFD/STZ-Induced C57BL/6J mice. J Agric Food Chem. 2021;69(20):5618–27.
Article CAS PubMed Google Scholar
Johnson R, Fiddler T, Pirozek J, Gordon J, Sodhi S, Poirier J, Kattini R, Kelly L. Traditional medicine and type 2 diabetes in first nations patients. Can J Diabetes. 2022;46(1):53–9.
Wang J, Ma Q, Li Y, Li P, Wang M, Wang T, Wang C, Wang T, Zhao B. Research progress on traditional Chinese medicine syndromes of diabetes mellitus. Biomed Pharmacother. 2020;121:109565.
Article CAS PubMed Google Scholar
Andrade C, Gomes NGM, Duangsrisai S, Andrade PB, Pereira DM, Valentão P. Medicinal plants utilized in Thai traditional medicine for diabetes treatment: ethnobotanical surveys, scientific evidence and phytochemicals. J Ethnopharmacol. 2020;263:113177.
Article CAS PubMed Google Scholar
Alur V, Raju V, Vastrad B, Tengli A, Vastrad C, Kotturshetti S. Integrated bioinformatics analysis reveals novel key biomarkers and potential candidate small molecule drugs in gestational diabetes mellitus. Biosci Rep. 2021;41(5):BSR20210617.
Article CAS PubMed PubMed Central Google Scholar
Saik OV, Klimontov VV. Bioinformatic reconstruction and analysis of gene networks related to glucose variability in diabetes and its complications. Int J Mol Sci. 2020;21:22.
Zdychová J, Komers R. Emerging role of akt kinase/protein kinase B signaling in pathophysiology of diabetes and its complications. Physiol Res. 2005;54(1):1–16.
Morral N. Novel targets and therapeutic strategies for type 2 diabetes. Trends Endocrinol Metab. 2003;14(4):169–75.
Article CAS PubMed Google Scholar
Sato H, Nagashima K, Ogura M, Sato Y, Tahara Y, Ogura K, Yamano G, Sugizaki K, Fujita N, Tatsuoka H, Usui R, Mukai E, Fujimoto S, Inagaki N. Src regulates insulin secretion and glucose metabolism by influencing subcellular localization of glucokinase in pancreatic β-cells. J Diabetes Invest. 2016;7(2):171–8.
Gogg S, Smith U, Jansson PA. Increased MAPK activation and impaired insulin signaling in subcutaneous microvascular endothelial cells in type 2 diabetes: the role of endothelin-1. Diabetes. 2009;58(10):2238–45.
Article CAS PubMed PubMed Central Google Scholar
Chai L, Zhou K, Wang S, Zhang H, Fan N, Li J, Tan X, Hu L, Fan X. Psoralen and Bakuchiol ameliorate M-CSF plus RANKL-induced osteoclast differentiation and bone resorption Via inhibition of AKT and AP-1 pathways in vitro. Cell Physiol Biochem. 2018;48(5):2123–33.
Article CAS PubMed Google Scholar
Lv L, Liu B. Anti–Tumor effects of bakuchiol on human gastric carcinoma cell lines are mediated through PI3K/AKT and MAPK signaling pathways. Mol Med Rep. 2017;16(6):8977–82.
Article CAS PubMed Google Scholar
Xu K, Sha Y, Wang S, Chi Q, Liu Y, Wang C, Yang L. Effects of Bakuchiol on chondrocyte proliferation via the PI3K-Akt and ERK1/2 pathways mediated by the estrogen receptor for promotion of the regeneration of knee articular cartilage defects. Cell Prolif. 2019;52(5):e12666.
Comments (0)