Integrated investigation and discovery of therapeutic targets for 3-hydroxybakuchiol against diabetes based on molecular docking studies and cell experiments

Tinajero MG, Malik VS. An update on the epidemiology of type 2 diabetes: a global perspective. Endocrinol Metab Clin North Am. 2021;50(3):337–55.

Article  PubMed  Google Scholar 

Stumvoll M, Goldstein BJ, van Haeften TW. Type 2 diabetes: principles of pathogenesis and therapy. Lancet (London England). 2005;365(9467):1333–46.

Article  CAS  PubMed  Google Scholar 

Brunton S. Pathophysiology of type 2 diabetes: the evolution of our understanding. J Fam Pract. 2016;65(4 Suppl):supp_az_0416.

PubMed  Google Scholar 

Galicia-Garcia U, Benito-Vicente A, Jebari S, Larrea-Sebal A, Siddiqi H, Uribe KB, Ostolaza H, Martín C. Pathophysiology of type 2 diabetes mellitus. Int J Mol Sci. 2020;21:17.

Article  Google Scholar 

Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N, Colagiuri S, Guariguata L, Motala AA, Ogurtsova K, Shaw JE, Bright D, Williams R. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the International Diabetes Federation Diabetes Atlas, 9(th) edition. Diabetes Res Clin Pract. 2019;157:107843.

Article  PubMed  Google Scholar 

Herrera-Gómez F, Asensio-González M, González-López A, Álvarez FJ. Effects of intensive control of glycemia on clinical kidney outcomes in type 2 Diabetes patients compared with Standard Control: a Meta-analysis. Front Pharmacol. 2017;8:845.

Article  PubMed  PubMed Central  Google Scholar 

Newman JD, Schwartzbard AZ, Weintraub HS, Goldberg IJ, Berger JS. Primary prevention of cardiovascular disease in diabetes mellitus. J Am Coll Cardiol. 2017;70(7):883–93.

Article  PubMed  PubMed Central  Google Scholar 

Quattrocchi E, Goldberg T, Marzella N. Management of type 2 diabetes: consensus of diabetes organizations. Drugs Context. 2020;9:212607.

Article  PubMed  PubMed Central  Google Scholar 

Ríos JL, Francini F, Schinella GR. Natural products for the treatment of type 2 diabetes mellitus. Planta Med. 2015;81(12–13):975–94.

PubMed  Google Scholar 

Xu L, Li Y, Dai Y, Peng J. Natural products for the treatment of type 2 Diabetes Mellitus: Pharmacology and mechanisms. Pharmacol Res. 2018;130:451–65.

Article  CAS  PubMed  Google Scholar 

Katsura H, Tsukiyama RI, Suzuki A, Kobayashi M. In vitro antimicrobial activities of bakuchiol against oral microorganisms. Antimicrob Agents Chemother. 2001;45(11):3009–13.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lin J, Yao HJ, Li RY. Bakuchiol inhibits cell proliferation and induces apoptosis and cell cycle arrest in SGC-7901 human gastric cancer cells. J BUON. 2016;21(4):889–94.

PubMed  Google Scholar 

Kumar A, Sawhney G, Kumar Nagar R, Chauhan N, Gupta N, Kaul A, Ahmed Z, Sangwan PL, Satheesh Kumar P, Yadav G. Evaluation of the immunomodulatory and anti-inflammatory activity of Bakuchiol using RAW 264.7 macrophage cell lines and in animal models stimulated by lipopolysaccharide (LPS). Int Immunopharmacol. 2021;91:107264.

Article  CAS  PubMed  Google Scholar 

Zhao G, Zang SY, Zheng XW, Zhang XH, Guo LH. Bakuchiol analogs inhibit monoamine transporters and regulate monoaminergic functions. Biochem Pharmacol. 2008;75(9):1835–47.

Article  CAS  PubMed  Google Scholar 

Krenisky JM, Luo J, Reed MJ, Carney JR. Isolation and antihyperglycemic activity of bakuchiol from Otholobium pubescens (Fabaceae), a peruvian medicinal plant used for the treatment of diabetes. Biol Pharm Bull. 1999;22(10):1137–40.

Article  CAS  PubMed  Google Scholar 

Ma W, Guo W, Shang F, Li Y, Li W, Liu J, Ma C, Teng J. Bakuchiol alleviates hyperglycemia-induced diabetic cardiomyopathy by reducing myocardial oxidative stress via activating the SIRT1/Nrf2 signaling pathway. Oxidative Med Cell Longev. 2020;2020:3732718.

Article  Google Scholar 

Madrid Villegas A, Díaz Peralta K, González Tapia C, Catalán Marín K, Espinoza Catalán L. Antiphytopathogenic activity of Psoralea glandulosa (Fabaceae) against Botrytis Cinerea and Phytophthora Cinnamomi. Nat Prod Res. 2015;29(6):586–8.

Article  PubMed  Google Scholar 

Suárez AI, Thu ZM, Ramírez J, León D, Cartuche L, Armijos C, Vidari G. Main constituents and antidiabetic properties of Otholobium Mexicanum. Nat Prod Commun. 2017;12(4):533–5.

PubMed  Google Scholar 

Li S, Zhang B. Traditional Chinese medicine network pharmacology: theory, methodology and application. Chin J Nat Med. 2013;11(2):110–20.

Article  PubMed  Google Scholar 

Yuan Z, Pan Y, Leng T, Chu Y, Zhang H, Ma J, Ma X. Progress and prospects of research ideas and methods in the network pharmacology of traditional Chinese medicine. J Pharm Pharm Sci. 2022;25:218–26.

Article  PubMed  Google Scholar 

Liu C, Liu L, Li J, Zhang Y, Meng DL. Virtual screening of active compounds from jasminum lanceolarium and potential targets against primary dysmenorrhea based on network pharmacology. Nat Prod Res. 2021;35(24):5853–6.

Article  CAS  PubMed  Google Scholar 

Chin CH, Chen SH, Wu HH, Ho CW, Ko MT, Lin CY. cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst Biol. 2014;8(Suppl 4):11.

Article  Google Scholar 

Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27–30.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kanehisa M, Furumichi M, Sato Y, Kawashima M, Ishiguro-Watanabe M. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 2023;51(D1):D587-d592.

Article  CAS  PubMed  Google Scholar 

Yang Z, Huang W, Zhang J, Xie M, Wang X. Baicalein improves glucose metabolism in insulin resistant HepG2 cells. Eur J Pharmacol. 2019;854:187–93.

Article  CAS  PubMed  Google Scholar 

Zhou YJ, Xu N, Zhang XC, Zhu YY, Liu SW, Chang YN. Chrysin improves glucose and lipid metabolism disorders by regulating the AMPK/PI3K/AKT signaling pathway in insulin-resistant HepG2 cells and HFD/STZ-Induced C57BL/6J mice. J Agric Food Chem. 2021;69(20):5618–27.

Article  CAS  PubMed  Google Scholar 

Johnson R, Fiddler T, Pirozek J, Gordon J, Sodhi S, Poirier J, Kattini R, Kelly L. Traditional medicine and type 2 diabetes in first nations patients. Can J Diabetes. 2022;46(1):53–9.

Article  PubMed  Google Scholar 

Wang J, Ma Q, Li Y, Li P, Wang M, Wang T, Wang C, Wang T, Zhao B. Research progress on traditional Chinese medicine syndromes of diabetes mellitus. Biomed Pharmacother. 2020;121:109565.

Article  CAS  PubMed  Google Scholar 

Andrade C, Gomes NGM, Duangsrisai S, Andrade PB, Pereira DM, Valentão P. Medicinal plants utilized in Thai traditional medicine for diabetes treatment: ethnobotanical surveys, scientific evidence and phytochemicals. J Ethnopharmacol. 2020;263:113177.

Article  CAS  PubMed  Google Scholar 

Alur V, Raju V, Vastrad B, Tengli A, Vastrad C, Kotturshetti S. Integrated bioinformatics analysis reveals novel key biomarkers and potential candidate small molecule drugs in gestational diabetes mellitus. Biosci Rep. 2021;41(5):BSR20210617.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Saik OV, Klimontov VV. Bioinformatic reconstruction and analysis of gene networks related to glucose variability in diabetes and its complications. Int J Mol Sci. 2020;21:22.

Article  Google Scholar 

Zdychová J, Komers R. Emerging role of akt kinase/protein kinase B signaling in pathophysiology of diabetes and its complications. Physiol Res. 2005;54(1):1–16.

Article  PubMed  Google Scholar 

Morral N. Novel targets and therapeutic strategies for type 2 diabetes. Trends Endocrinol Metab. 2003;14(4):169–75.

Article  CAS  PubMed  Google Scholar 

Sato H, Nagashima K, Ogura M, Sato Y, Tahara Y, Ogura K, Yamano G, Sugizaki K, Fujita N, Tatsuoka H, Usui R, Mukai E, Fujimoto S, Inagaki N. Src regulates insulin secretion and glucose metabolism by influencing subcellular localization of glucokinase in pancreatic β-cells. J Diabetes Invest. 2016;7(2):171–8.

Article  CAS  Google Scholar 

Gogg S, Smith U, Jansson PA. Increased MAPK activation and impaired insulin signaling in subcutaneous microvascular endothelial cells in type 2 diabetes: the role of endothelin-1. Diabetes. 2009;58(10):2238–45.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chai L, Zhou K, Wang S, Zhang H, Fan N, Li J, Tan X, Hu L, Fan X. Psoralen and Bakuchiol ameliorate M-CSF plus RANKL-induced osteoclast differentiation and bone resorption Via inhibition of AKT and AP-1 pathways in vitro. Cell Physiol Biochem. 2018;48(5):2123–33.

Article  CAS  PubMed  Google Scholar 

Lv L, Liu B. Anti–Tumor effects of bakuchiol on human gastric carcinoma cell lines are mediated through PI3K/AKT and MAPK signaling pathways. Mol Med Rep. 2017;16(6):8977–82.

Article  CAS  PubMed  Google Scholar 

Xu K, Sha Y, Wang S, Chi Q, Liu Y, Wang C, Yang L. Effects of Bakuchiol on chondrocyte proliferation via the PI3K-Akt and ERK1/2 pathways mediated by the estrogen receptor for promotion of the regeneration of knee articular cartilage defects. Cell Prolif. 2019;52(5):e12666.

Article  PubMed 

Comments (0)

No login
gif