MÜLLER A, MARSCHALL S, JENSEN O B, et al. Diode laser based light sources for biomedical applications[J]. Laser & photonics reviews, 2013, 7(5): 605–627.
DENBAARS S P, FEEZELL D, KELCHNER K, et al. Development of gallium-nitride-based light-emitting diodes (LEDs) and laser diodes for energy-efficient lighting and displays[J]. Acta materialia, 2013, 61(3): 945–951.
ISLEK M, NILUFER-ERDIL D, KNUTHSEN P. Changes in flavonoids of sliced and fried yellow onions (A llium cepa L. var. zittauer) during storage at different atmospheric, temperature and light conditions[J]. Journal of food processing and preservation, 2015, 39(4): 357–368.
NEVSKY A Y, BRESSEL U, ERNSTING I, et al. A narrow-line-width external cavity quantum dot laser for high-resolution spectroscopy in the near-infrared and yellow spectral ranges[J]. Applied physics B, 2008, 92: 501–507.
MAX C E, OLIVIER S S, FRIEDMAN H W, et al. Image improvement from a sodium-layer laser guide star adaptive optics system[J]. Science, 1997, 277(5332): 1649–1652.
HUO X, QI Y, ZHANG Y, et al. Research development of 589 nm laser for sodium laser guide stars[J]. Optics and lasers in engineering, 2020, 134: 106207.
FENG Y, HUANG S, SHIRAKAWA A, et al. 589 nm light source based on Raman fiber laser[J]. Japanese journal of applied physics, 2004, 43(6A): L722.
YUE J, SHE C Y, WILLIAMS B P, et al. Continuous-wave sodium D2 resonance radiation generated in single-pass sum-frequency generation with periodically poled lithium niobate[J]. Optics letters, 2009, 34(7): 1093–1095.
YUAN Y, LI B, GUO X. Laser diode pumped Nd: YAG crystals frequency summing 589 nm yellow laser[J]. Optik, 2016, 127(2): 710–712.
Article ADS MathSciNet Google Scholar
CHEN M, DAI S, YIN H, et al. Passively Q-switched yellow laser at 589 nm by intracavity frequency-doubled c-cut composite Nd: YVO4 self-Raman laser[J]. Optics & laser technology, 2021, 133: 106534.
LI Y, HUANG X, MAO W, et al. Compact 589 nm yellow source generated by frequency-doubling of passively Q-switched Nd: YVO4 Raman laser[J]. Microwave and optical technology letters, 2022.
ARMSTRONG J A, BLOEMBERGEN N, DUCUING J, et al. Interactions between light waves in a nonlinear dielectric[J]. Physical review, 1962, 127(6): 1918.
HOUE M, TOWNSEND P D. An introduction to methods of periodic poling for second-harmonic generation[J]. Journal of physics D: applied physics, 1995, 28(9): 1747.
LIU W J. Study on nonlinear optical effects of optical superlattices and preparation of materials[D]. Jinan: Shandong Normal University, 2003. (in Chinese)
WANG C L. Research on nonlinear optical effects and structural design of optical superlattices[D]. Jinan: Shandong Normal University, 2005. (in Chinese)
GAYER O, SACKS Z, GALUN E, et al. Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3[J]. Applied physics B, 2008, 91: 343–348.
DUAN Y, LI Y, XU C, et al. Generation of 589 nm emission via frequency doubling of a composite c-cut Nd: YVO4 self-Raman laser[J]. IEEE photonics technology letters, 2022, 34(15): 831–834.
MILLER G D. Periodically poled lithium niobate: modeling, fabrication, and nonlinear optical performance[M]. Stanford University, 1998.
MIZUUCHI K, MORIKAWA A, SUGITA T, et al. Electric-field poling in Mg-doped LiNbO3[J]. Journal of applied physics, 2004, 96(11): 6585–6590.
BUZÁDY A, GÁLOS R, MAKKAI G, et al. Temperature-dependent terahertz time-domain spectroscopy study of Mg-doped stoichiometric lithium niobate[J]. Optical materials express, 2020, 10(4): 998–1006.
Comments (0)