Finite element simulation of Rayleigh surface acoustic wave in (100) AlN/(100) ZnO/diamond layered structure

SU R, SHEN J, LU Z, et al. Wideband and low-loss surface acoustic wave filter based on 15° YX-LiNbO/SiO/Si structure[J]. IEEE electron device letters, 2021, 42(3): 438–441.

Article  ADS  Google Scholar 

SHEN J, FU S, SU R, et al. High-performance surface acoustic wave devices using LiNbO/SiO/SiC multilayered substrates[J]. IEEE transactions on microwave theory and techniques, 2021, 69(8): 3693–3705.

Article  ADS  Google Scholar 

KADOTA M, ISHII Y, TANAKA S. Surface acoustic wave resonators with hetero acoustic layer (HAL) structure using lithium tantalate and quartz[J]. IEEE transactions on ultrasonics ferroelectrics and frequency control, 2020, 68(5): 1955–1964.

Article  Google Scholar 

WU J B, ZHANG S B, CHEN Y, et al. Advanced surface acoustic wave resonators on LiTaO3/SiO2/sapphire substrate[J]. IEEE electron device letters, 2022, 43(10): 1748–1751.

Article  ADS  Google Scholar 

ZHANG H, WANG H. Investigation of surface acoustic wave propagation characteristics in new multilayer structure: SiO2/IDT/LiNbO3/diamond/Si[J]. Micromachines, 2021, 12(11): 1211–1286.

Article  MathSciNet  Google Scholar 

KOBAYASHI Y, TSUCHIYA T, OKAZAKI M, et al. High-frequency surface acoustic wave resonator with ScAlN/hetero-epitaxial diamond[J]. Diamond and related materials, 2021, 111(1): 108190.

Article  ADS  Google Scholar 

XIE B W, DING F Z, DONG Z B, et al. FEM analysis of piezoelectric film as IDT on the diamond substrate to enhance the quality factor of SAW devices[J]. Diamond and related materials, 2020, 102: 107659.

Article  ADS  Google Scholar 

LI M. High performance SAW resonators using Li-TaO3/SiO2/4H-SiC multilayer substrate[J]. IEEE electron device letters, 2022, 43(10): 1772–1775.

Article  ADS  Google Scholar 

SUZUKI M, KAKIO S. Analysis of leaky surface acoustic wave characteristics propagating on high piezoelectric ScAlN film/high velocity quartz substrate[J]. Japanese journal of applied physics, 2020, 59(SK): SKKC07.

Article  Google Scholar 

MOUSTAFA M, LAOUINI G, ALZOUBI T. Finite element analysis of SAW sensor with ZnO substrate for dichloromethane (DCM) gas detection[J]. Archives of acoustics: journal of Polish academy of sciences, 2021, 46(3): 419–426.

Google Scholar 

RO R, LEE R, LIN Z X, et al. Surface acoustic wave characteristics of a (100) ZnO/(100) AlN/diamond structure[J]. Thin solid films, 2013, 529: 470–474.

Article  ADS  Google Scholar 

QIAN L, LI C, LI M, et al. Theoretical investigation of surface acoustic wave propagation characteristics in periodic (AlN/ZnO)N/diamond multilayer structures[J]. Applied physics letters, 2014, 105(18): 183501.

Article  ADS  Google Scholar 

KVASHNIN G M, SOROKIN B P. Peculiarities of energy trapping of the UHF elastic waves in diamond-based piezoelectric layered structure. II. Lateral energy flow[J]. Ultrasonics, 2021, 111: 106311–106313.

Article  Google Scholar 

QIAN J, LI C P, QIAN L R, et al. Three-dimensional finite element simulation of love mode surface acoustic wave in layered structures including ZnO piezoelectric film and diamond substrate[J]. Diamond and related materials, 2018, 88: 123–128.

Article  ADS  Google Scholar 

WU S, LIN Z X, RO R, et al. Rayleigh and shear horizontal surface acoustic properties of (100) ZnO films on silicon[J]. IEEE transactions on ultrasonics ferroelectrics & frequency control, 2010, 57(5): 1237–1239.

Article  Google Scholar 

LIN Z X, WU S, RO R, et al. Surface acoustic wave properties of (100) AlN films on diamond with different IDT positions[J]. IEEE transactions on ultrasonics ferroelectrics & frequency control, 2009, 56(6): 1246–1251.

Article  Google Scholar 

HAKIKI M E, ELMAZRIA O, ASSOUAR M B, et al. ZnO/AlN/diamond layered structure for SAW devices combining high velocity and high electromechanical coupling coefficient[J]. Diamond & related materials, 2005, 14(3–7): 1175–1178.

Article  ADS  Google Scholar 

BRIZOUAL L L, ELMAZRIA O, ZHGOON S, et al. AlN/ZnO/diamond waveguiding layer acoustic wave structure: theoretical and experimental results[J]. IEEE transactions on ultrasonics ferroelectrics & frequency control, 2010, 57(8): 1818–1824.

Article  Google Scholar 

HAN X, WANG F, ZHANG K, et al. Effect on coupling coefficient of diamond-based surface acoustic wave devices using two layers of piezoelectric materials of different widths[J]. Diamond and related materials, 2022, 125: 125–128.

Article  Google Scholar 

CHEN Y P, ZHAO J X, YANG Y J, et al. Substrate removal structures for AlScN/diamond surface acoustic wave resonators[J]. Diamond and related materials, 2023, 133.

HATASHITA K, TSUCHIYA T, OKAZAKI M, et al. High electro-mechanical coupling coefficient SAW device with ScAlN on diamond[J]. Japanese journal of applied physics, 2023, 62.

CUI Y, DU G, ZHANG Y, et al. Growth of ZnO (002) and ZnO (100) films on GaAs substrates by MOCVD[J]. Journal of crystal growth, 2005, 282(34): 389–393.

Article  ADS  Google Scholar 

WANG H H. Properties of AlN (100) thin films prepared by reactive laser ablation[J]. Modern physics letters B, 2008, 15(24): 1069–1075.

Article  ADS  Google Scholar 

DAS A, RATH M, NAIR D R, et al. Realization of preferential (100) oriented AlN thin films on Mo coated Si substrate using reactive RF magnetron sputtering[J]. Applied surface science, 2021, 3: 149308.

Article  Google Scholar 

TIWARI C, DIXIT A. Highly textured (100)-oriented AlN thin films using thermal atomic layer deposition and their electrical properties[J]. Applied physics A, 2021, 127(11): 1–6.

Article  Google Scholar 

ZHANG Q, TAO H, TANG G, et al. SAW characteristics of AlN/SiO2/3C-SiC layered structure with embedded electrodes[J]. Ultrasonics symposium IEEE, 2015, 63(34): 1608–1612.

Google Scholar 

ZHOU C, YANG Y, CAI H, et al. Temperature-compensated high-frequency surface acoustic wave device[J]. IEEE electron device letters, 2013, 34(12): 1572–1574.

Article  ADS  Google Scholar 

LUO J T, QUAN A J, LIANG G X, et al. Love-mode surface acoustic wave devices based on multilayers of TeO2/ZnO (1120)/Si (100) with high sensitivity and temperature stability[J]. Ultrasonics, 2017, 75(75): 63–70.

Article  Google Scholar 

Comments (0)

No login
gif