Large animal models to study effectiveness of therapy devices in the treatment of heart failure with preserved ejection fraction (HFpEF)

National Heart LaBI (2021) Cardiovascular disease is on the rise, but we know how to curb it. We’ve done it before. Available from https://www.nhlbi.nih.gov/news/2021/cardiovascular-disease-rise-we-know-how-curb-it-weve-done-it

Barry A Borlaug WSC (2022) Treatment and prognosis of heart failure with preserved ejection fraction. UpToDate

Gevaert AB, Boen JRA, Segers VF, Van Craenenbroeck EM (2019) Heart failure with preserved ejection fraction: a review of cardiac and noncardiac pathophysiology. Front Physiol 10:638

Article  PubMed  PubMed Central  Google Scholar 

Gazewood JD, Turner PL (2017) Heart failure with preserved ejection fraction: diagnosis and management. Am Fam Physician 96(9):582–588

PubMed  Google Scholar 

Oktay AA, Rich JD, Shah SJ (2013) The emerging epidemic of heart failure with preserved ejection fraction. Curr Heart Fail Rep 10(4):401–410

Article  PubMed  Google Scholar 

Tromp J, Shen L, Jhund PS, Anand IS, Carson PE, Desai AS et al (2019) Age-related characteristics and outcomes of patients with heart failure with preserved ejection fraction. J Am Coll Cardiol 74(5):601–612

Article  PubMed  Google Scholar 

Guazzi M, Ghio S, Adir Y (2020) Pulmonary hypertension in HFpEF and HFrEF: JACC review topic of the week. J Am Coll Cardiol 76(9):1102–1111

Article  PubMed  Google Scholar 

Clinic M (2015) Heart failure with preserved ejection fraction (HFpEF): more than diastolic dysfunction. Available from https://www.mayoclinic.org/medical-professionals/cardiovascular-diseases/news/heart-failure-with-preserved-ejection-fraction-hfpef-more-than-diastolic-dysfunction/mac-20430055

Guazzi M (2014) Pulmonary hypertension in heart failure preserved ejection fraction: prevalence, pathophysiology, and clinical perspectives. Circ Heart Fail 7(2):367–377

Article  PubMed  Google Scholar 

Zamfirescu MB, Ghilencea LN, Popescu MR, Bejan GC, Maher SM, Popescu AC, Dorobanțu M (2021) The E/e’Ratio—role in risk stratification of acute heart failure with preserved ejection fraction. Medicina 57(4):375

Article  PubMed  PubMed Central  Google Scholar 

Conceição G, Heinonen I, Lourenço AP, Duncker DJ, Falcão-Pires I (2016) Animal models of heart failure with preserved ejection fraction. Neth Heart J 24(4):275–286

Article  PubMed  PubMed Central  Google Scholar 

Charles CJ, Rademaker MT, Scott NJ, Richards AM (2020) Large animal models of heart failure: reduced vs. preserved ejection fraction. Animals 10(10):1906

Article  PubMed  PubMed Central  Google Scholar 

Miyagi C, Miyamoto T, Kuroda T, Karimov JH, Starling RC, Fukamachi K (2022) Large animal models of heart failure with preserved ejection fraction. Heart Fail Rev 27(2):595–608

Article  PubMed  Google Scholar 

Sharp TE 3rd, Scarborough AL, Li Z, Polhemus DJ, Hidalgo HA, Schumacher JD et al (2021) Novel Göttingen miniswine model of heart failure with preserved ejection fraction integrating multiple comorbidities. JACC Basic Transl Sci 6(2):154–170

Article  PubMed  PubMed Central  Google Scholar 

Charles CJ, Lee P, Li RR, Yeung T, Ibraham Mazlan SM, Tay ZW et al (2020) A porcine model of heart failure with preserved ejection fraction: magnetic resonance imaging and metabolic energetics. ESC Heart Fail 7(1):92–102

PubMed  Google Scholar 

Li H, Xia YY, Xia CL, Li Z, Shi Y, Li XB et al (2022) Mimicking metabolic disturbance in establishing animal models of heart failure with preserved ejection fraction. Front Physiol 13:879214

Article  PubMed  PubMed Central  Google Scholar 

van Ham WB, Kessler EL, Oerlemans MI, Handoko ML, Sluijter JP, van Veen TA, den Ruijter HM, de Jager SC (2022) Clinical phenotypes of heart failure with preserved ejection fraction to select preclinical animal models. Basic Transl Sci 7(8):844–857

Google Scholar 

Olver TD, Edwards JC, Jurrissen TJ, Veteto AB, Jones JL, Gao C et al (2019) Western diet-fed, aortic-banded Ossabaw swine: a preclinical model of cardio-metabolic heart failure. JACC Basic Transl Sci 4(3):404–421

Article  PubMed  PubMed Central  Google Scholar 

Silva KAS, Emter CA (2020) Large animal models of heart failure: a translational bridge to clinical success. JACC Basic Transl Sci 5(8):840–856

Article  PubMed  PubMed Central  Google Scholar 

Samson R, Jaiswal A, Ennezat PV, Cassidy M, Le Jemtel TH (2016) Clinical phenotypes in heart failure with preserved ejection fraction. J Am Heart Assoc 5(1):e002477

Article  PubMed  PubMed Central  Google Scholar 

Sasayama S, Ross J Jr, Franklin D, Bloor CM, Bishop S, Dilley RB (1976) Adaptations of the left ventricle to chronic pressure overload. Circ Res 38(3):172–178

Article  CAS  PubMed  Google Scholar 

Koide M, Nagatsu M, Zile MR, Hamawaki M, Swindle MM, Keech G et al (1997) Premorbid determinants of left ventricular dysfunction in a novel model of gradually induced pressure overload in the adult canine. Circulation 95(6):1601–1610

Article  CAS  PubMed  Google Scholar 

Fujii AM, Aoyagi T, Flanagan MF, Takahashi T, Bennett-Guerrero E, Colan SD et al (1993) Response of the hypertrophied left ventricle to tachycardia: importance of maturation. Am J Physiol 264(3 Pt 2):H983–H993

CAS  PubMed  Google Scholar 

Ye Y, Gong G, Ochiai K, Liu J, Zhang J (2001) High-energy phosphate metabolism and creatine kinase in failing hearts: a new porcine model. Circulation 103(11):1570–1576

Article  CAS  PubMed  Google Scholar 

Gelpi RJ, Park M, Gao S, Dhar S, Vatner DE, Vatner SF (2011) Apoptosis in severe, compensated pressure overload predominates in nonmyocytes and is related to the hypertrophy but not function. Am J Physiol Heart Circ Physiol 300(3):H1062–H1068

Article  CAS  PubMed  Google Scholar 

Song LS, Pi Y, Kim SJ, Yatani A, Guatimosim S, Kudej RK et al (2005) Paradoxical cellular Ca2+ signaling in severe but compensated canine left ventricular hypertrophy. Circ Res 97(5):457–464

Article  CAS  PubMed  Google Scholar 

Neeb ZP, Edwards JM, Alloosh M, Long X, Mokelke EA, Sturek M (2010) Metabolic syndrome and coronary artery disease in Ossabaw compared with Yucatan swine. Comp Med 60(4):300–315

CAS  PubMed  PubMed Central  Google Scholar 

Bikou O, Watanabe S, Hajjar RJ, Ishikawa K (2018) A pig model of myocardial infarction: catheter-based approaches. Methods Mol Biol 1816:281–294

Article  CAS  PubMed  Google Scholar 

Yarbrough WM, Mukherjee R, Stroud RE, Rivers WT, Oelsen JM, Dixon JA et al (2012) Progressive induction of left ventricular pressure overload in a large animal model elicits myocardial remodeling and a unique matrix signature. J Thorac Cardiovasc Surg 143(1):215–223

Article  PubMed  Google Scholar 

Emter CA, Tharp DL, Ivey JR, Ganjam VK, Bowles DK (2011) Low-intensity interval exercise training attenuates coronary vascular dysfunction and preserves Ca2+-sensitive K+ current in miniature swine with LV hypertrophy. Am J Physiol Heart Circ Physiol 301(4):H1687–H1694

Article  CAS  PubMed  PubMed Central  Google Scholar 

Emter CA, Baines CP (2010) Low-intensity aerobic interval training attenuates pathological left ventricular remodeling and mitochondrial dysfunction in aortic-banded miniature swine. Am J Physiol Heart Circ Physiol 299(5):H1348–H1356

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wallner M, Eaton DM, Berretta RM, Borghetti G, Wu J, Baker ST et al (2017) A feline HFpEF model with pulmonary hypertension and compromised pulmonary function. Sci Rep 7(1):16587

Article  PubMed  PubMed Central  Google Scholar 

Zhen N, Loo SJ, Su LP, Tao ZH, Gui F, Luo JH et al (2021) A diastolic dysfunction model in non-human primates with transverse aortic constriction. Exp Anim 70(4):498–507

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gyöngyösi M, Pavo N, Lukovic D, Zlabinger K, Spannbauer A, Traxler D et al (2017) Porcine model of progressive cardiac hypertrophy and fibrosis with secondary postcapillary pulmonary hypertension. J Transl Med 15(1):202

Article  PubMed  PubMed Central  Google Scholar 

Munagala VK, Hart CY, Burnett JC Jr, Meyer DM, Redfield MM (2005) Ventricular structure and function in aged dogs with renal hypertension: a model of experimental diastolic heart failure. Circulation 111(9):1128–1135

Article  PubMed  PubMed Central  Google Scholar 

Hamdani N, Bishu KG, von Frieling-Salewsky M, Redfield MM, Linke WA (2013) Deranged myofilament phosphorylation and function in experimental heart failure with preserved ejection fraction. Cardiovasc Res 97(3):464–471

Article  CAS  PubMed  Google Scholar 

Borlaug BA, Carter RE, Melenovsky V, DeSimone CV, Gaba P, Killu A et al (2017) Percutaneous pericardial resection: a novel potential treatment for heart failure with preserved ejection fraction. Circ Heart Fail 10(4):e003612

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nachar W, Merlet N, Maafi F, Shi Y, Mihalache-Avram T, Mecteau M et al (2019) Cardiac inflammation and diastolic dysfunction in hypercholesterolemic rabbits. PLoS ONE 14(8):e0220707

Article  CAS  PubMed  PubMed Central  Google Scholar 

van den Dorpel MMP, Heinonen I, Snelder SM, Vos HJ, Sorop O, van Domburg RT et al (2018) Early detection of left ventricular diastolic dysfunction using conventional and speckle tracking echocardiography in a large animal model of metabolic dysfunction. Int J Cardiovasc Imaging 34(5):743

Comments (0)

No login
gif