Neural oscillatory activity and connectivity in children who stutter during a non-speech motor task

Alm P. Stuttering and the basal ganglia circuits: a critical review of possible relations. J Commun Disorders. 2004;37:325–69.

Article  Google Scholar 

Anders P, Müller H, Skjæret-Maroni N, Vereijken B, Baumeister J. The influence of motor tasks and cut-off parameter selection on artifact subspace reconstruction in EEG recordings. Med Biol Eng Comput. 2020. https://doi.org/10.1007/s11517-020-02252-3.

Article  PubMed  PubMed Central  Google Scholar 

Armstrong S, Sale MV, Cunnington R. Neural oscillations and the initiation of voluntary movement. Front Psychol. 2018. https://doi.org/10.3389/fpsyg.2018.02509.

Article  PubMed  PubMed Central  Google Scholar 

Babiloni C, Del Percio C, Lopez S, Di Gennaro G, Quarato PP, Pavone L, Morace R, Soricelli A, Noce G, Esposito V, Gallese V, Mirabella G. Frontal functional connectivity of electrocorticographic delta and theta rhythms during action execution versus action observation in humans. Front Behav Neurosci. 2017. https://doi.org/10.3389/fnbeh.2017.00020.

Article  PubMed  PubMed Central  Google Scholar 

Baker SN. Oscillatory interactions between sensorimotor cortex and the periphery. Curr Opin Neurobiol. 2007. https://doi.org/10.1016/j.conb.2008.01.007.

Article  PubMed  PubMed Central  Google Scholar 

Bastos AM, Schoffelen JM. A tutorial review of functional connectivity analysis methods and their interpretational pitfalls. Front Syst Neurosci. 2016. https://doi.org/10.3389/fnsys.2015.00175.

Article  PubMed  PubMed Central  Google Scholar 

Bauerly KR, De Nil LF. Speech sequence skill learning in adults who stutter. J Fluency Disord. 2011. https://doi.org/10.1016/j.jfludis.2011.05.002.

Article  PubMed  Google Scholar 

Belyk M, Kraft SJ, Brown S. Stuttering as a trait or state - an ALE meta-analysis of neuroimaging studies. Eur J Neurosci. 2015. https://doi.org/10.1111/ejn.12765.

Article  PubMed  Google Scholar 

Belyk M, Kraft SJ, Brown S. Stuttering as a trait or a state revisited: motor system involvement in persistent developmental stuttering. Eur J Neurosci. 2017;45(4):622–4. https://doi.org/10.1111/ejn.13512.Erratumfor:EurJNeurosci.2015Jan;41(2):275-84. (PMID: 28191730).

Article  PubMed  Google Scholar 

Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple hypothesis testing. J R Stat Soc B. 1995;57:289–300.

Google Scholar 

Biermann-Ruben K, Salmelin R, Schnitzler A. Right rolandic activation during speech perception in stutterers: a MEG study. Neuroimage. 2005;25(3):793–801. https://doi.org/10.1016/j.neuroimage.2004.11.024. (PMID: 15808980).

Article  PubMed  Google Scholar 

Brown L, Sherbenou RJ, Johnsen SK. Test of nonverbal intelligence: TONI-4. Pro-ed: Austin, TX; 2010

Brown S, Ingham RJ, Ingham JC, Laird AR, Fox PT. Stuttered and fluent speech production: an ALE meta-analysis of functional neuroimaging studies. Hum Brain Mapp. 2005;25(1):105–17.

Article  PubMed  PubMed Central  Google Scholar 

Buzsáki G, Draguhn A. Neuronal oscillations in cortical networks. Science. 2004. https://doi.org/10.1126/science.1099745.

Article  PubMed  Google Scholar 

Chang SE, Garnett EO, Etchell A, Chow HM. Functional and neuroanatomical bases of developmental stuttering: current insights. Neuroscientist. 2019. https://doi.org/10.1177/1073858418803594.

Article  PubMed  Google Scholar 

Chang SE, Guenther FH. Involvement of the cortico-basal ganglia-thalamocortical loop in developmental stuttering. Front Psychol. 2020. https://doi.org/10.3389/fpsyg.2019.03088.

Article  PubMed  PubMed Central  Google Scholar 

Chang SE, Horwitz B, Ostuni J, Reynolds R, Ludlow CL. Evidence of left inferior frontal-premotor structural and functional connectivity deficits in adults who stutter. Cereb Cortex. 2011;21(11):2507–18. https://doi.org/10.1093/cercor/bhr028 Epub 2011 Apr 6. PMID: 21471556; PMCID: PMC3183422.

Article  PubMed  PubMed Central  Google Scholar 

Chang CY, Hsu SH, Pion-Tonachini L, Jung TP. Evaluation of artifact subspace reconstruction for automatic artifact components removal in multi-channel EEG recordings. IEEE Transactions on Biomedical Engineering. 2020. https://doi.org/10.1109/TBME.2019.2930186.

Article  PubMed  Google Scholar 

Chang SE, Kenney MK, Loucks TM, Ludlow CL. Brain activation abnormalities during speech and non-speech in stuttering speakers. Neuroimage. 2009;46(1):201–12. https://doi.org/10.1016/j.neuroimage.2009.01.066 Epub 2009 Feb 11. PMID: 19401143; PMCID: PMC2693291.

Article  PubMed  Google Scholar 

Chang SE, Zhu DC, Choo AL, Angstadt M. White matter neuroanatomical differences in young children who stutter. Brain. 2015;138(Pt 3):694–711. https://doi.org/10.1093/brain/awu400.

Chow HM, Chang SE. White matter developmental trajectories associated with persistence and recovery of childhood stuttering. Hum Brain Mapp. 2017. https://doi.org/10.1002/hbm.23590.

Article  PubMed  PubMed Central  Google Scholar 

Civier O, Bullock D, Max L, Guenther FH. Computational modeling of stuttering caused by impairments in a basal ganglia thalamo-cortical circuit involved in syllable selection and initiation. Brain Lang. 2013. https://doi.org/10.1016/j.bandl.2013.05.016.

Article  PubMed  PubMed Central  Google Scholar 

Civier O, Tasko SM, Guenther FH. Overreliance on auditory feedback may lead to sound/syllable repetitions: simulations of stuttering and fluency-inducing conditions with a neural model of speech production. J Fluency Disord. 2010. https://doi.org/10.1016/j.jfludis.2010.05.002.

Article  PubMed  PubMed Central  Google Scholar 

Cohen MX. Analyzing Neural Time Series Data: Theory and Practice. Cambridge, MA: MIT Press; 2014.

Book  Google Scholar 

Dejean C, Arbuthnott G, Wickens JR, Le Moine C, Boraud T, Hyland BI. Power fluctuations in beta and gamma frequencies in rat globus pallidus: association with specific phases of slow oscillations and differential modulation by dopamine D1 and D2 receptors. J Neurosci. 2011. https://doi.org/10.1523/JNEUROSCI.3311-09.2011.

Article  PubMed  PubMed Central  Google Scholar 

Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods. 2004. https://doi.org/10.1016/j.jneumeth.2003.10.009.

Article  PubMed  Google Scholar 

de Oliveira SC, Gribova A, Donchin O, Bergman H, Vaadia E. Neural interactions between motor cortical hemispheres during bimanual and unimanual arm movements. Eur J Neurosci. 2001. https://doi.org/10.1046/j.0953-816x.2001.01801.

Article  Google Scholar 

De Nil LF, Kroll RM, Lafaille SJ, Houle S. A positron emission tomography study of short- and long-term treatment effects on functional brain activation in adults who stutter. J Fluency Disord. 2003 Winter;28(4):357-79; quiz 379-80.  https://doi.org/10.1016/j.jfludis.2003.07.002. PMID: 14643070.

Ehrler D, McGhee R. Primary Test of Nonverbal Intelligence. Pro-Ed. 2008

Engel AK, Fries P. Beta-band oscillations–signalling the status quo? Curr Opin Neurobiol. 2010;20(2):156–65.

Article  CAS  PubMed  Google Scholar 

Engel AK, Singer W. Temporal binding and the neural correlates of sensory awareness. Trends Cogn Sci. 2001. https://doi.org/10.1016/s1364-6613(00)01568-0.

Article  PubMed  Google Scholar 

Etchell AC, Ryan M, Martin E, Johnson BW, Sowman PF. Abnormal time course of low beta modulation in non-fluent preschool children: a magnetoencephalographic study of rhythm tracking. Neuroimage. 2016. https://doi.org/10.1016/j.neuroimage.2015.10.086.

Article  PubMed  Google Scholar 

Falk S, Müller T, Bella SD. Sensorimotor Synchronization in Stuttering Children and Adolescents. Procedia - Social and Behavioral Sciences. 2014;126:206–7.

Article  Google Scholar 

Fries P. A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn Sci. 2005. https://doi.org/10.1016/j.tics.2005.08.011.

Article  PubMed  Google Scholar 

Fries P. Rhythms for cognition: communication through coherence. Neuron. 2015. https://doi.org/10.1016/j.neuron.2015.09.034.

Article  PubMed  PubMed Central  Google Scholar 

Fukai T. Sequence generation in arbitrary temporal patterns from theta-nested gamma oscillations: a model of the basal ganglia-thalamo-cortical loops. Neural Netw. 1999. https://doi.org/10.1016/s0893-6080(99)00057-x.

Article  PubMed  Google Scholar 

Gaetz W, Macdonald M, Cheyne D, Snead OC. Neuromagnetic imaging of movement-related cortical oscillations in children and adults: age predicts post-movement beta rebound. Neuroimage. 2010. https://doi.org/10.1016/j.neuroimage.2010.01.077.

Article  PubMed  Google Scholar 

Gehrig J, Wibral M, Arnold C, Kell CA. Setting up the speech production network: how oscillations contribute to lateralized information routing. Front Psychol. 2012. https://doi.org/10.3389/fpsyg.2012.00169.

Article  PubMed  PubMed Central  Google Scholar 

Gerloff C, Corwell B, Chen R, Hallett M, Cohen LG. The role of the human motor cortex in the control of complex and simple finger movement sequences. Brain. 1998. https://doi.org/10.1093/brain/121.9.1695.

Article  PubMed  Google Scholar 

Gross J, Pollok B, Dirks M, Timmermann L, Butz M, Schnitzler A. Task-dependent oscillations during unimanual and bimanual movements in the human primary motor cortex and SMA studied with magnetoencephalography. Neuroimage. 2005. https://doi.org/10.1016/j.neuroimage.2005.01.025.

Article  PubMed  Google Scholar 

Comments (0)

No login
gif