Tsao CW, et al. Heart disease and stroke statistics-2022 update: a report from the American Heart Association. Circulation. 2022;145:E153–639.
Timmis A, et al. European Society of Cardiology: cardiovascular disease statistics 2021. Eur Heart J. 2022;43:716–99.
Libby P. The vascular biology of atherosclerosis. In: Braunwald’s heart disease, 2 vol set: a textbook of cardiovascular medicine 12th edition. Elsevier. 2021. 425–441.
Morrow D.A, de Lemos J. Stable ischemic heart disease. In: Braunwald’s heart disease, 2 vol set: a textbook of cardiovascular medicine 12th edition. Elsevier. 2021. 739–785.
Duncker DJ, Canty Jr JM. Coronary blood flow and myocardioal ischemia. In: Braunwald’s heart disease, 2 vol set: a textbook of cardiovascular medicine 12th edition. Elsevier, 2021. 609–635.
Poulter N. Coronary heart disease is a multifactorial disease. Am J of Hypertens. 1999;12. https://academic.oup.com/ajh/article/12/S6/92S/106550.
Aragam KG, et al. Discovery and systematic characterization of risk variants and genes for coronary artery disease in over a million participants. Nat Genet. 2022;54:1803–15.
Article CAS PubMed PubMed Central Google Scholar
Tcheandjieu C, Zhu X, Hilliard AT, Clarke SL, Napolioni V, Ma S, Lee KM, Fang H, Chen F, Lu Y, Tsao NL, Raghavan S, Koyama S, Gorman BR, Vujkovic M, Klarin D, Levin MG, Sinnott-Armstrong N, Wojcik GL, et al. Large-scale genome-wide association study of coronary artery disease in genetically diverse populations. Nat Med. 2022;28(8):1679–92. https://doi.org/10.1038/s41591-022-01891-3. Accessed 23 Oct 2023.
Article CAS PubMed PubMed Central Google Scholar
Odden MC, et al. The impact of the aging population on coronary heart disease in the United States. Am J Med. 2011;124:827–33.
Article PubMed PubMed Central Google Scholar
Mohebi R, et al. Cardiovascular disease projections in the United States based on the 2020 census estimates. J Am Coll Cardiol. 2022;80:565–78.
Article PubMed PubMed Central Google Scholar
Dai H, et al. Global, regional, and national burden of ischaemic heart disease and its attributable risk factors, 1990–2017: results from the Global Burden of Disease Study 2017. Eur Heart J Qual Care Clin Outcomes. 2022;8:50–60.
Chen PB, et al. Directed remodeling of the mouse gut microbiome inhibits the development of atherosclerosis. Nat Biotechnol. 2020;38:1288–97.
Article CAS PubMed PubMed Central Google Scholar
Quer G, Arnaout R, Henne M, Arnaout R. Machine learning and the future of cardiovascular care: JACC state-of-the-art review. J Am Coll Cardiol. 2021;77:300–13.
Article PubMed PubMed Central Google Scholar
Shameer K, Johnson KW, Glicksberg BS, Dudley JT, Sengupta PP. Machine learning in cardiovascular medicine: are we there yet? Heart. 2018;104:1156–64.
Sardar P, et al. Impact of artificial intelligence on interventional cardiology: from decision-making aid to advanced interventional procedure assistance. JACC Cardiovasc Interv. 2019;12:1293–303.
Cho SY, et al. Pre-existing and machine learning-based models for cardiovascular risk prediction. Sci Rep. 2021;11:8886.
Article CAS PubMed PubMed Central Google Scholar
Christiansen MK, et al. Polygenic risk score-enhanced risk stratification of coronary artery disease in patients with stable chest pain. Circ Genom Precis Med. 2021;14:E003298.
Article CAS PubMed Google Scholar
Cuocolo R, Perillo T, de Rosa E, Ugga L, Petretta M. Current applications of big data and machine learning in cardiology. J Geriatr Cardiol. 2019;16:601–7.
PubMed PubMed Central Google Scholar
Muse ED, Chen SF, Torkamani A. Monogenic and polygenic models of coronary artery disease. Curr Cardiol Rep. 2021;23:1–12.
Olson RS, La Cava W, Mustahsan Z, Varik A, Moore JH. Data-driven advice for applying machine learning to bioinformatics problems. Pac Symp Biocomput. 2018;0:192–203.
Krittanawong C, et al. Deep learning for cardiovascular medicine: a practical primer. Eur Heart J. 2019;40:2058-2069C.
Article PubMed PubMed Central Google Scholar
Belkin M, Hsu D, Ma S, Mandal S. Reconciling modern machine-learning practice and the classical bias–variance trade-off. Proc Natl Acad Sci U S A. 2019;116:15849–54.
Article CAS PubMed PubMed Central Google Scholar
Kunapuli G. Ensemble methods: hype or hallelujah? In: Ensemble methods for machine learning 3–20. Manning Publications. 2023.
Sapoval N, et al. Current progress and open challenges for applying deep learning across the biosciences. Nat Commun. 2022;13:1–12.
Thirunavukarasu AJ, et al. Large language models in medicine. Nat Med. 2023;29:1930–40.
Article CAS PubMed Google Scholar
Greener JG, Kandathil SM, Moffat L, Jones DT. A guide to machine learning for biologists. Nat Rev Mol Cell Biol. 2022;23:40–55.
Article CAS PubMed Google Scholar
Krittanawong C, Zhang HJ, Wang Z, Aydar M, Kitai T. Artificial intelligence in precision cardiovascular medicine. J Am Coll Cardiol. 2017;69:2657–64.
Hernandez-Boussard T, Monda KL, Crespo BC, Riskin D. Real world evidence in cardiovascular medicine: ensuring data validity in electronic health record-based studies. J Am Med Inform Assoc. 2019;26:1189–94.
Article PubMed PubMed Central Google Scholar
Azmi J, et al. A systematic review on machine learning approaches for cardiovascular disease prediction using medical big data. Med Eng Phys. 2022;105:103825.
Louridi N, Douzi S, El Ouahidi B. Machine learning-based identification of patients with a cardiovascular defect. J Big Data. 2021;8:133. https://doi.org/10.1186/s40537-021-00524-9.
Benjamins JW, Hendriks T, Knuuti J, Juarez-Orozco LE, van der Harst P. A primer in artificial intelligence in cardiovascular medicine. Neth Hear J. 2019;27:392–402.
Attia Z, Kapa S, Noseworthy P, Friedman P. Artificial intelligence in cardiovascular medicine. In: Braunwald’s heart disease, 2 vol set: a textbook of cardiovascular medicine 12th edition. Elsevier. 2021. 109–116.
Rigdon J, Basu S. Machine learning with sparse nutrition data to improve cardiovascular mortality risk prediction in the USA using nationally randomly sampled data. BMJ Open. 2019;9:32703.
Petrazzini BO, et al. Coronary risk estimation based on clinical data in electronic health records. J Am Coll Cardiol. 2022;79:1155–66.
Article PubMed PubMed Central Google Scholar
Shorewala V. Early detection of coronary heart disease using ensemble techniques. Inform Med Unlocked. 2021;26:100655. https://doi.org/10.1016/j.imu.2021.100655, https://www.sciencedirect.com/science/article/pii/S235291482100143X
Jung S, Ahn E, Koh SB, Lee SH, Hwang GS. Purine metabolite-based machine learning models for risk prediction, prognosis, and diagnosis of coronary artery disease. Biomed Pharmacother. 2021;139:111621. https://doi.org/10.1016/j.biopha.2021.111621.
Article CAS PubMed Google Scholar
Zuber V, et al. High-throughput multivariable Mendelian randomization analysis prioritizes apolipoprotein B as key lipid risk factor for coronary artery disease. Int J Epidemiol. 2021;50:893–901.
Choi MH, Oh S, Choi JY, Kim JH, Lee SW. A statistical learning framework for predicting left ventricular ejection fraction based on glutathione peroxidase-3 level in ischemic heart disease. Comput Biol Med. 2022;149:105929. https://doi.org/10.1016/j.compbiomed.2022.105929.
Article CAS PubMed Google Scholar
Commandeur F, et al. Machine learning to predict the long-term risk of myocardial infarction and cardiac death based on clinical risk, coronary calcium, and epicardial adipose tissue: a prospective study. Cardiovasc Res. 2020;116:2216–25.
Article CAS PubMed Google Scholar
Zhang L, et al. Sleep heart rate variability assists the automatic prediction of long-term cardiovascular outcomes. Sleep Med. 2020;67:217–24.
Ottosson F, et al. A plasma lipid signature predicts incident coronary artery disease. Int J Cardiol. 2021;331:249–54.
Poss AM, et al. Machine learning reveals serum sphingolipids as cholesterol-independent biomarkers of coronary artery disease. J Clin Investig. 2020;130:1363–76.
Article CAS PubMed PubMed Central Google Scholar
Tsigalou C, et al. Estimation of low-density lipoprotein cholesterol by machine learning methods. Clin Chim Acta. 2021;517:108–16.
Comments (0)