Artificial Intelligence Across the Continuum of Atrial Fibrillation Screening, Diagnosis, and Treatment

Alonso A, et al. Simple risk model predicts incidence of atrial fibrillation in a racially and geographically diverse population: the CHARGE-AF consortium. J Am Heart Assoc. 2013;2(2): e000102.

Article  PubMed  PubMed Central  Google Scholar 

Attia ZI, et al. Prospective evaluation of smartwatch-enabled detection of left ventricular dysfunction. Nat Med. 2022;28(12):2497–503.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Attia ZI, et al. An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction. Lancet. 2019;394(10201):861–7.

Article  PubMed  Google Scholar 

Cai W, et al. Accurate detection of atrial fibrillation from 12-lead ECG using deep neural network. Comput Biol Med. 2020;116: 103378.

Article  PubMed  Google Scholar 

Connolly SJ, et al. Dabigatran versus warfarin in patients with atrial fibrillation. N Engl J Med. 2009;361(12):1139–51.

Article  CAS  PubMed  Google Scholar 

Cox J, et al. Computerized clinical decision support to improve stroke prevention therapy in primary care management of atrial fibrillation: a cluster randomized trial. Am Heart J. 2024;273:102–10.

Article  PubMed  Google Scholar 

Davidson KW, et al. Screening for Atrial Fibrillation: US Preventive Services Task Force Recommendation Statement. Jama. 2022;327(4):360–7.

Article  PubMed  Google Scholar 

Duan J, et al. Accurate detection of atrial fibrillation events with R-R intervals from ECG signals. PLoS One. 2022;17(8): e0271596.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Feuerriegel S, et al. Causal machine learning for predicting treatment outcomes. Nat Med. 2024;30(4):958–68.

Article  CAS  PubMed  Google Scholar 

Gadaleta M, et al. Prediction of atrial fibrillation from at-home single-lead ECG signals without arrhythmias. NPJ Digit Med. 2023;6(1):229.

Article  PubMed  PubMed Central  Google Scholar 

Giugliano RP, et al. Edoxaban versus warfarin in patients with atrial fibrillation. N Engl J Med. 2013;369(22):2093–104.

Article  CAS  PubMed  Google Scholar 

Glasgow RE, et al. The NUDGE trial pragmatic trial to enhance cardiovascular medication adherence: study protocol for a randomized controlled trial. Trials. 2021;22(1):528.

Article  PubMed  PubMed Central  Google Scholar 

Granger CB, et al. Apixaban versus warfarin in patients with atrial fibrillation. N Engl J Med. 2011;365(11):981–92.

Article  CAS  PubMed  Google Scholar 

Hindricks G, et al. 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS): The Task Force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC) Developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC. Eur Heart J. 2021;42(5):373–498.

Article  PubMed  Google Scholar 

Ho PM, Bull S. Personalized patient data and behavioral nudges to improve adherence to chronic cardiovascular medications (The Nudge Study); 2023. Retrieved 6/22/2024, from https://dcricollab.dcri.duke.edu/sites/NIHKR/KR/GR-Slides-11-17-23.pdf.

Hygrell T, et al. An artificial intelligence-based model for prediction of atrial fibrillation from single-lead sinus rhythm electrocardiograms facilitating screening. Europace. 2023;25(4):1332–8.

Article  PubMed  PubMed Central  Google Scholar 

Kent DM, et al. Personalized evidence based medicine: predictive approaches to heterogeneous treatment effects. BMJ 363. https://www.bmj.com/content/363/bmj.k4245

Khurshid S, et al. ECG-Based Deep Learning and Clinical Risk Factors to Predict Atrial Fibrillation. Circulation. 2022;145(2):122–33.

Article  CAS  PubMed  Google Scholar 

Kini V, Ho PM. Interventions to Improve Medication Adherence: A Review. Jama. 2018;320(23):2461–73.

Article  PubMed  Google Scholar 

Komen JJ, et al. Oral anticoagulants in patients with atrial fibrillation at low stroke risk: a multicentre observational study. Eur Heart J. 2022;43(37):3528–38.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kong D, et al. A novel IRBF-RVM model for diagnosis of atrial fibrillation. Comput Methods Programs Biomed. 2019;177:183–92.

Article  PubMed  Google Scholar 

Lee S, et al. Artificial Intelligence for Detection of Cardiovascular-Related Diseases from Wearable Devices: A Systematic Review and Meta-Analysis. Yonsei Med J. 2022;63(Suppl):S93–s107.

Article  PubMed  PubMed Central  Google Scholar 

Li YG, et al. A Simple Clinical Risk Score (C(2)HEST) for Predicting Incident Atrial Fibrillation in Asian Subjects: Derivation in 471,446 Chinese Subjects, With Internal Validation and External Application in 451,199 Korean Subjects. Chest. 2019;155(3):510–8.

Article  PubMed  Google Scholar 

Lopes RD, et al. Apixaban versus aspirin according to CHA2DS2-VASc score in subclinical atrial fibrillation: Insights from ARTESiA. J Am Coll Cardiol. 2024;84(4):354–64.

Lown M, et al. Machine learning detection of Atrial Fibrillation using wearable technology. PLoS One. 2020;15(1): e0227401.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lubitz SA, et al. Detection of Atrial Fibrillation in a Large Population Using Wearable Devices: The Fitbit Heart Study. Circulation. 2022;146(19):1415–24.

Article  PubMed  PubMed Central  Google Scholar 

Lubitz SA, et al. Genetic Risk Prediction of Atrial Fibrillation. Circulation. 2017;135(14):1311–20.

Article  PubMed  Google Scholar 

Mahajan R, et al. Subclinical device-detected atrial fibrillation and stroke risk: a systematic review and meta-analysis. Eur Heart J. 2018;39(16):1407–15.

Article  PubMed  Google Scholar 

Manetas-Stavrakakis N, et al. Accuracy of artificial intelligence-based technologies for the diagnosis of atrial fibrillation: A systematic review and meta-analysis. J Clin Med. 2023;12(20):6576.

Marsili IA, et al. Implementation and validation of real-time algorithms for atrial fibrillation detection on a wearable ECG device. Comput Biol Med. 2020;116: 103540.

Article  PubMed  Google Scholar 

Ngufor C, et al. Identifying treatment heterogeneity in atrial fibrillation using a novel causal machine learning method. Am Heart J. 2023;260:124–40.

Article  PubMed  PubMed Central  Google Scholar 

Noseworthy PA, et al. Artificial intelligence-guided screening for atrial fibrillation using electrocardiogram during sinus rhythm: a prospective non-randomised interventional trial. Lancet. 2022a;400(10359):1206–12.

Article  PubMed  Google Scholar 

Noseworthy PA, et al. Percutaneous left atrial appendage occlusion in comparison to non-vitamin K antagonist oral anticoagulant among patients with atrial fibrillation. J Am Heart Assoc. 2022b;11(19):e027001.

Members WC, Joglar JA, Chung MK, Armbruster AL, Benjamin EJ, Chyou JY, Cronin EM, Deswal A, Eckhardt LL, Goldberger ZD, Gopinathannair R. 2023 ACC/AHA/ACCP/HRS Guideline for the diagnosis and management of atrial fibrillation: A report of the american college of cardiology/american heart association joint committee on clinical practice guidelines. J Am Coll Cardiol. 2024 Jan 2;83(1):109–279. https://doi.org/10.1016/j.jacc.2023.08.017

O’Brien EC, et al. Effect of the 2014 atrial fibrillation guideline revisions on the proportion of patients recommended for oral anticoagulation. JAMA Intern Med. 2015;175(5):848–50.

Article  PubMed  Google Scholar 

Ong CJ, et al. Machine learning and natural language processing methods to identify ischemic stroke, acuity and location from radiology reports. PLoS One. 2020;15(6):e0234908.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Osmancik P, et al. 4-Year Outcomes After Left Atrial Appendage Closure Versus Nonwarfarin Oral Anticoagulation for Atrial Fibrillation. J Am Coll Cardiol. 2022;79(1):1–14.

Article  PubMed  Google Scholar 

Packer DL, et al. Effect of Catheter A

Comments (0)

No login
gif