IGFBP2 drives epithelial-mesenchymal transition in hepatocellular carcinoma via activating the Wnt/β-catenin pathway

Vogel A, Meyer T, Sapisochin G, Salem R, Saborowski A. Hepatocellular carcinoma. Lancet. 2022;400:1345. https://doi.org/10.1016/S0140-6736(22)01200-4.

Article  CAS  PubMed  Google Scholar 

Uchino K, Tateishi R, Shiina S, Kanda M, Masuzaki R, Kondo Y, Goto T, Omata M, Yoshida H, Koike K. Hepatocellular carcinoma with extrahepatic metastasis. Cancer. 2011;117:4475. https://doi.org/10.1002/cncr.25960.

Article  PubMed  Google Scholar 

Thiery JP, Sleeman JP. Complex networks orchestrate epithelial–mesenchymal transitions. Nat Rev Mol Cell Biol. 2006;7:131. https://doi.org/10.1038/nrm1835.

Article  CAS  PubMed  Google Scholar 

Sanchez-Tillo E, Lazaro A, Torrent R, Cuatrecasas M, Vaquero EC, Castells A, Engel P, Postigo A. ZEB1 represses E-cadherin and induces an EMT by recruiting the SWI/SNF chromatin-remodeling protein BRG1. Oncogene. 2010;29:3490. https://doi.org/10.1038/onc.2010.102.

Article  CAS  PubMed  Google Scholar 

Valenta T, Hausmann G, Basler K. The many faces and functions of β-catenin. EMBO J. 2012;31:2714. https://doi.org/10.1038/emboj.2012.150.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Naujok O, Lentes J, Diekmann U, Davenport C, Lenzen S. Cytotoxicity and activation of the Wnt/beta-catenin pathway in mouse embryonic stem cells treated with four GSK3 inhibitors. BMC Res Notes. 2014;7:273. https://doi.org/10.1186/1756-0500-7-273.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nusse R, Clevers H. Wnt/β-catenin signaling, disease, and emerging therapeutic modalities. Cell. 2017;169:985. https://doi.org/10.1016/j.cell.2017.05.016.

Article  CAS  PubMed  Google Scholar 

He X, Tamai K, Semenov M, Kato Y, Spokony R, Liu C, Katsuyama Y, Hess F, Saint-Jeannet J. LDL-receptor-related proteins in Wnt signal transduction. Nature (London). 2000;407:530. https://doi.org/10.1038/35035117.

Article  PubMed  Google Scholar 

Zeng X, Tamai K, Doble B, Li S, Huang H, Habas R, Okamura H, Woodgett J, He X. A dual-kinase mechanism for Wnt co-receptor phosphorylation and activation. Nature. 2005;438:873. https://doi.org/10.1038/nature04185.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huynh H, Zheng J, Umikawa M, Zhang C, Silvany R, Iizuka S, Holzenberger M, Zhang W, Zhang CC. IGF binding protein 2 supports the survival and cycling of hematopoietic stem cells. Blood. 2011;118:3236. https://doi.org/10.1182/blood-2011-01-331876.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liou J, Shun C, Liang J, Chiu H, Chen M, Chen CC, Wang H, Wu M, Lin J. Plasma insulin-like growth factor-binding protein-2 levels as diagnostic and prognostic biomarker of colorectal cancer. J Clin Endocrinol Metab. 2010;95:1717. https://doi.org/10.1210/jc.2009-2668.

Article  CAS  PubMed  Google Scholar 

Moore LM, Holmes KM, Smith SM, Wu Y, Tchougounova E, Uhrbom L, Sawaya R, Bruner JM, Fuller GN, Zhang W. IGFBP2 is a candidate biomarker for Ink4a-Arf status and a therapeutic target for high-grade gliomas. Proc Natl Acad Sci PNAS. 2009;106:16675. https://doi.org/10.1073/pnas.0900807106.

Article  PubMed  Google Scholar 

Wang H, Wang H, Shen W, Huang H, Hu L, Ramdas L, Zhou Y, Liao WS, Fuller GN, Zhang W. Insulin-like growth factor binding protein 2 enhances glioblastoma invasion by activating invasion-enhancing genes. Cancer Res. 2003;63(15):4315–21.

CAS  PubMed  Google Scholar 

Ma Y, Cui D, Zhang Y, Han C, Wei W. Insulin-like growth factor binding protein-2 promotes proliferation and predicts poor prognosis in hepatocellular carcinoma. Onco Targets Ther. 2020;13:5083. https://doi.org/10.2147/OTT.S249527.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guo Q, Yu D, Yang Z, Liu D, Cao H, Liao X. IGFBP2 upregulates ZEB1 expression and promotes hepatocellular carcinoma progression through NF-κB signaling pathway. Dig Liver Dis. 2020;52:573. https://doi.org/10.1016/j.dld.2019.10.008.

Article  CAS  PubMed  Google Scholar 

Han C, Li Y, Zhang Y, Wang Y, Cui D, Luo T, Zhang Y, Liu Q, Li H, Wang C, Xu D, Ma Y, Wei W. Targeted inhibition of GRK2 kinase domain by CP-25 to reverse fibroblast-like synoviocytes dysfunction and improve collagen-induced arthritis in rats. Acta Pharm Sin B. 1835;2021:11. https://doi.org/10.1016/j.apsb.2021.01.015.

Article  CAS  Google Scholar 

Fagotto F. Looking beyond the Wnt pathway for the deep nature of β-catenin. Embo Rep. 2013;14:422. https://doi.org/10.1038/embor.2013.45.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ranke MB, Maier KP, Schweizer R, Stadler B, Schleicher S, Elmlinger MW, Flehmig B. Pilot study of elevated levels of insulin-like growth factor-binding protein-2 as indicators of hepatocellular carcinoma. Hormone Res. 2003;60(4):174–80. https://doi.org/10.1159/000073229

Article  CAS  PubMed  Google Scholar 

Zhou P, Li Y, Li B, Zhang M, Liu Y, Yao Y, Li D. NMIIA promotes tumor growth and metastasis by activating the Wnt/β-catenin signaling pathway and EMT in pancreatic cancer. Oncogene. 2019;38:5500. https://doi.org/10.1038/s41388-019-0806-6.

Article  CAS  PubMed  Google Scholar 

Liu CC, Cai DL, Sun F, Wu ZH, Yue B, Zhao SL, Wu XS, Zhang M, Zhu XW, Peng ZH, Yan DW. FERMT1 mediates epithelial-mesenchymal transition to promote colon cancer metastasis via modulation of β-catenin transcriptional activity. Oncogene. 2017;36:1779. https://doi.org/10.1038/onc.2016.339.

Article  CAS  PubMed  Google Scholar 

Zhu W, Shiojima I, Ito Y, Li Z, Ikeda H, Yoshida M, Naito AT, Nishi J, Ueno H, Umezawa A, Minamino T, Nagai T, Kikuchi A, Asashima M, Komuro I. IGFBP-4 is an inhibitor of canonical Wnt signalling required for cardiogenesis. Nature. 2008;454:345. https://doi.org/10.1038/nature07027.

Article  CAS  PubMed  Google Scholar 

Forbes BE, Mccarthy P, Norton RS. Insulin-like growth factor binding proteins: a structural perspective. Front Endocrinol. 2012;3:1. https://doi.org/10.3389/fendo.2012.00038.

Article  Google Scholar 

Gao S, Sun Y, Zhang X, Hu L, Liu Y, Chua CY, Phillips LM, Ren H, Fleming JB, Wang H, Chiao PJ, Hao J, Zhang W. IGFBP2 activates the NF-κB pathway to drive epithelial-mesenchymal transition and invasive character in pancreatic ductal adenocarcinoma. Cancer Res (Chicago, Ill). 2016;76:6543. https://doi.org/10.1158/0008-5472.CAN-16-0438.

Article  CAS  Google Scholar 

Du D, Liu C, Qin M, Zhang X, Xi T, Yuan S, Hao H, Xiong J. Metabolic dysregulation and emerging therapeutical targets for hepatocellular carcinoma. Acta Pharm Sin B. 2022;12:558. https://doi.org/10.1016/j.apsb.2021.09.019.

Article  CAS  PubMed  Google Scholar 

Yuan K, Xie K, Lan T, Xu L, Chen X, Li X, Liao M, Li J, Huang J, Zeng Y, Wu H. TXNDC12 promotes EMT and metastasis of hepatocellular carcinoma cells via activation of β-catenin. Cell Death Differ. 2020;27:1355. https://doi.org/10.1038/s41418-019-0421-7.

Article  CAS  PubMed  Google Scholar 

Yang B, Feng X, Liu H, Tong R, Wu J, Li C, Yu H, Chen Y, Cheng Q, Chen J, Cai X, Wu W, Lu Y, Hu J, Liang K, Lv Z, Wu J, Zheng S. High-metastatic cancer cells derived exosomal miR92a-3p promotes epithelial-mesenchymal transition and metastasis of low-metastatic cancer cells by regulating PTEN/Akt pathway in hepatocellular carcinoma. Oncogene. 2020;39:6529. https://doi.org/10.1038/s41388-020-01450-5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gotzmann J, Fischer ANM, Zojer M, Mikula M, Proell V, Huber H, Jechlinger M, Waerner T, Weith A, Beug H, Mikulits W. A crucial function of PDGF in TGF-β-mediated cancer progression of hepatocytes. Oncogene. 2006;25:3170. https://doi.org/10.1038/sj.onc.1209083.

Article  CAS  PubMed  Google Scholar 

Haider C, Hnat J, Wagner R, Huber H, Timelthaler G, Grubinger M, Coulouarn C, Schreiner W, Schlangen K, Sieghart W, Peck-Radosavljevic M, Mikulits W. Transforming growth factor-β and axl induce CXCL5 and neutrophil recruitment in hepatocellular carcinoma. Hepatology. 2019;69:222. https://doi.org/10.1002/hep.30166.

Article  CAS  PubMed  Google Scholar 

Qu C, He D, Lu X, Dong L, Zhu Y, Zhao Q, Jiang X, Chang P, Jiang X, Wang L, Zhang Y, Bi L, He J, Peng Y, Su J, Zhang H, Huang H, Li Y, Zhou S, Qu Y, Zhao Y, Zhang Z. Salt-inducible Kinase (SIK1) regulates HCC progression and WNT/β-catenin activation. J Hepatol. 2016;64:1076. https://doi.org/10.1016/j.jhep.2016.01.005.

Article  CAS  PubMed  Google Scholar 

Puisieux A, Brabletz T, Caramel J. Oncogenic roles of EMT-inducing transcription factors. Nat Cell Biol. 2014;16:488. https://doi.org/10.1038/ncb2976.

Article  CAS  PubMed  Google Scholar 

Holmes KM, Annala M, Chua CYX, Dunlap SM, Liu Y, Hugen N, Moore LM, Cogdell D, Hu L, Nykter M, Hess K, Fuller GN, Zhang W. Insulin-like growth factor-binding protein 2-driven glioma progression is prevented by blocking a clinically significant integrin, integrin-linked kinase, and NF-κB network. Proc Natl Acad Sci. 2012;109:3475. https://doi.org/10.1073/pnas.1120375109.

Article  PubMed  PubMed Central  Google Scholar 

Sehgal P, Kumar N, Praveen KV, Patil S, Bhattacharya A, Vijaya KM, Mukherjee G, Kondaiah P. Regulation of protumorigenic pathways by insulin like growth factor binding protein2 and its association along with β-catenin in breast cancer lymph node metastasis. Mol Cancer. 2013;12:63.

Comments (0)

No login
gif