Rodrigues GA, Shalaev E, Karami TK, et al. Pharmaceutical development of AAV-based gene therapy products for the eye. Pharm Res. 2018;36(2):29. https://doi.org/10.1007/s11095-018-2554-7.
Article CAS PubMed PubMed Central Google Scholar
Lee JH, Wang JH, Chen J, et al. Gene therapy for visual loss: opportunities and concerns. Prog Retin Eye Res. 2019;68:31–53. https://doi.org/10.1016/j.preteyeres.2018.08.003.
Article CAS PubMed Google Scholar
Petit L, Khanna H, Punzo C. Advances in gene therapy for diseases of the eye. Hum Gene Ther. 2016;27(8):563–79. https://doi.org/10.1089/hum.2016.040.
Article CAS PubMed PubMed Central Google Scholar
Botto C, Rucli M, Tekinsoy MD, et al. Early and late stage gene therapy interventions for inherited retinal degenerations. Prog Retin Eye Res. 2022;86: 100975. https://doi.org/10.1016/j.preteyeres.2021.100975.
Article CAS PubMed Google Scholar
Bainbridge JW, Smith AJ, Barker SS, et al. Effect of gene therapy on visual function in Leber’s congenital amaurosis. N Engl J Med. 2008;358(21):2231–9. https://doi.org/10.1056/NEJMoa0802268.
Article CAS PubMed Google Scholar
Maguire AM, Simonelli F, Pierce EA, et al. Safety and efficacy of gene transfer for Leber’s congenital amaurosis. N Engl J Med. 2008;358(21):2240–8. https://doi.org/10.1056/NEJMoa0802315.
Article CAS PubMed PubMed Central Google Scholar
Hauswirth WW, Aleman TS, Kaushal S, et al. Treatment of leber congenital amaurosis due to RPE65 mutations by ocular subretinal injection of adeno-associated virus gene vector: short-term results of a phase I trial. Hum Gene Ther. 2008;19(10):979–90. https://doi.org/10.1089/hum.2008.107.
Article CAS PubMed PubMed Central Google Scholar
Russell S, Bennett J, Wellman JA, et al. Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: a randomised, controlled, open-label, phase 3 trial. Lancet. 2017;390(10097):849–60. https://doi.org/10.1016/S0140-6736(17)31868-8.
Article CAS PubMed PubMed Central Google Scholar
Atchison RW, Casto BC, Hammon WM. Adenovirus-associated defective virus particles. Science. 1965;149(3685):754–6. https://doi.org/10.1126/science.149.3685.754.
Article CAS PubMed Google Scholar
Rose JA, Berns KI, Hoggan MD, Koczot FJ. Evidence for a single-stranded adenovirus-associated virus genome: formation of a DNA density hybrid on release of viral DNA. Proc Natl Acad Sci U S A. 1969;64(3):863–9. https://doi.org/10.1073/pnas.64.3.863.
Article CAS PubMed PubMed Central Google Scholar
Bucher K, Rodriguez-Bocanegra E, Dauletbekov D, Fischer MD. Immune responses to retinal gene therapy using adeno-associated viral vectors—implications for treatment success and safety. Prog Retin Eye Res. 2021;83: 100915. https://doi.org/10.1016/j.preteyeres.2020.100915.
Article CAS PubMed Google Scholar
Srivastava A, Lusby EW, Berns KI. Nucleotide sequence and organization of the adeno-associated virus 2 genome. J Virol. 1983;45(2):555–64. https://doi.org/10.1128/JVI.45.2.555-564.1983.
Article CAS PubMed PubMed Central Google Scholar
Im D-S, Muzyczka N. The AAV origin binding protein Rep68 is an ATP-dependent site-specific endonuclease with DNA helicase activity. Cell. 1990;61(3):447–57.
Article CAS PubMed Google Scholar
McLaughlin SK, Collis P, Hermonat PL, Muzyczka N. Adeno-associated virus general transduction vectors: analysis of proviral structures. J Virol. 1988;62(6):1963–73. https://doi.org/10.1128/JVI.62.6.1963-1973.1988.
Article CAS PubMed PubMed Central Google Scholar
Khanani AM, Thomas MJ, Aziz AA, et al. Review of gene therapies for age-related macular degeneration. Eye (Lond). 2022;36(2):303–11. https://doi.org/10.1038/s41433-021-01842-1.
Naso MF, Tomkowicz B, Perry WL 3rd, Strohl WR. Adeno-associated virus (AAV) as a vector for gene therapy. BioDrugs. 2017;31(4):317–34. https://doi.org/10.1007/s40259-017-0234-5.
Article CAS PubMed PubMed Central Google Scholar
Srivastava A. In vivo tissue-tropism of adeno-associated viral vectors. Curr Opin Virol. 2016;21:75–80. https://doi.org/10.1016/j.coviro.2016.08.003.
Article CAS PubMed PubMed Central Google Scholar
Whitehead M, Osborne A, Yu-Wai-Man P, Martin K. Humoral immune responses to AAV gene therapy in the ocular compartment. Biol Rev Camb Philos Soc. 2021;96(4):1616–44. https://doi.org/10.1111/brv.12718.
Article CAS PubMed Google Scholar
Auricchio A, Kobinger G, Anand V, et al. Exchange of surface proteins impacts on viral vector cellular specificity and transduction characteristics: the retina as a model. Hum Mol Genet. 2001;10(26):3075–81.
Article CAS PubMed Google Scholar
Yang GS, Schmidt M, Yan Z, et al. Virus-mediated transduction of murine retina with adeno-associated virus: effects of viral capsid and genome size. J Virol. 2002;76(15):7651–60. https://doi.org/10.1128/jvi.76.15.7651-7660.2002.
Article CAS PubMed PubMed Central Google Scholar
Surace EM, Auricchio A, Reich SJ, et al. Delivery of adeno-associated virus vectors to the fetal retina: impact of viral capsid proteins on retinal neuronal progenitor transduction. J Virol. 2003;77(14):7957–63. https://doi.org/10.1128/jvi.77.14.7957-7963.2003.
Article CAS PubMed PubMed Central Google Scholar
Weber M, Rabinowitz J, Provost N, et al. Recombinant adeno-associated virus serotype 4 mediates unique and exclusive long-term transduction of retinal pigmented epithelium in rat, dog, and nonhuman primate after subretinal delivery. Mol Ther. 2003;7(6):774–81. https://doi.org/10.1016/s1525-0016(03)00098-4.
Article CAS PubMed Google Scholar
Han IC, Cheng JL, Burnight ER, et al. Retinal tropism and transduction of adeno-associated virus varies by serotype and route of delivery (Intravitreal, Subretinal, or Suprachoroidal) in rats. Hum Gene Ther. 2020;31(23–24):1288–99. https://doi.org/10.1089/hum.2020.043.
Article CAS PubMed PubMed Central Google Scholar
Lugin ML, Lee RT, Kwon YJ. Synthetically engineered adeno-associated virus for efficient, safe, and versatile gene therapy applications. ACS Nano. 2020;14(11):14262–83. https://doi.org/10.1021/acsnano.0c03850.
Article CAS PubMed Google Scholar
Andrzejewski S, Moyle PM, Stringer BW, Steel JC, Layton CJ. Neutralisation of adeno-associated virus transduction by human vitreous humour. Gene Ther. 2021;28(5):242–55. https://doi.org/10.1038/s41434-020-0162-8.
Article CAS PubMed Google Scholar
Blindness GBD, Vision Impairment C, Vision Loss Expert Group of the Global Burden of Disease S. Causes of blindness and vision impairment in 2020 and trends over 30 years, and prevalence of avoidable blindness in relation to VISION 2020: the Right to Sight: an analysis for the Global Burden of Disease Study. Lancet Glob Health. 2021;9(2):e144–60. https://doi.org/10.1016/S2214-109X(20)30489-7.
Tan TE, Fenner BJ, Barathi VA, et al. Gene-based therapeutics for acquired retinal disease: opportunities and progress. Front Genet. 2021;12: 795010. https://doi.org/10.3389/fgene.2021.795010.
Article CAS PubMed PubMed Central Google Scholar
Lin F-L, Wang P-Y, Chuang Y-F, et al. Gene therapy intervention in neovascular eye disease: a recent update. Mol Ther. 2020;28(10):2120–38. https://doi.org/10.1016/j.ymthe.2020.06.029.
Article CAS PubMed PubMed Central Google Scholar
Wong WL, Su X, Li X, et al. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. Lancet Glob Health. 2014;2(2):e106–16. https://doi.org/10.1016/S2214-109X(13)70145-1.
Fleckenstein M, Keenan TDL, Guymer RH, et al. Age-related macular degeneration. Nat Rev Dis Primers. 2021;7(1):31. https://doi.org/10.1038/s41572-021-00265-2.
Thomas CN, Sim DA, Lee WH, et al. Emerging therapies and their delivery for treating age-related macular degeneration. Br J Pharmacol. 2022;179(9):1908–37. https://doi.org/10.1111/bph.15459.
Article CAS PubMed Google Scholar
Rim PHH, de Vasconcellos JPC, de Melo MB, et al. Correlation between genetic and environmental risk factors for age-related macular degeneration in Brazilian patients. PLoS ONE. 2022;17(6): e0268795. https://doi.org/10.1371/journal.pone.0268795.
Comments (0)