Broadband absorption enhancement in hole-transport-layer-free perovskite solar cell by grating structure

PARK N G. Perovskite solar cells: an emerging photovoltaic technology[J]. Materials today, 2015, 18(2): 65–72.

Article  Google Scholar 

ZHU H, ZHAO Z, CAO H, et al. Determination of bandgaps of photoactive materials in perovskite solar cells at high temperatures by in-situ temperature-dependent resistance measurement[J]. Optoelectronics letters, 2016, 12: 337–339.

Article  ADS  Google Scholar 

LÖPER P, STUCKELBERGER M, NIESEN B, et al. Complex refractive index spectra of CH3NH3PbI3 perovskite thin films determined by spectroscopic ellipsometry and spectrophotometry[J]. Journal of physical chemistry letters, 2015, 6(1): 66–71.

Article  Google Scholar 

YUE L, YAN B, ATTRIDGE M, et al. Light absorption in perovskite solar cell: fundamentals and plasmonic enhancement of infrared band absorption[J]. Solar energy, 2016, 124: 143–152.

Article  ADS  Google Scholar 

TALEBI H, EMAMI F. Design of ultrathin hole-transport-layer-free perovskite solar cell with near-infrared absorption enhancement using Ag NPs[J]. Optics communications, 2020, 520: 128553.

Article  Google Scholar 

ALHARBI R, IRANNEJAD M, YAVUZ M. Gold-graphene core-shell nanostructure surface plasmon sensors[J]. Plasmonics, 2017, 12: 783–794.

Article  Google Scholar 

ELEWA S, YOUSIF B, ABO-ELSOUD M. Efficiency enhancement of intermediate band solar cell using front surface pyramid grating[J]. Optical and quantum electronics, 2021, 53(7): 1–18.

Article  Google Scholar 

SALEHI M R, SHAHRAKI M. Circuit modeling of waveguide grating nanostructures in ultrathin solar cells[J]. IEEE transactions on nanotechnology, 2017, 16(4): 616–623.

Article  ADS  Google Scholar 

ELEWA S, YOUSIF B, ABO-ELSOUD M. Improving efficiency of perovskite solar cell using optimized front surface nanospheres grating[J]. Applied physics A, 2021, 127: 1–14.

Article  Google Scholar 

SCHMAGER R, HOSSAIN I M, SCHACKMAR F, et al. Light coupling to quasi-guided modes in nanoimprinted perovskite solar cells[J]. Solar energy materials and solar cells, 2019, 201: 110080.

Article  Google Scholar 

WANG Y, WANG P, ZHOU X, et al. Diffraction-grated perovskite induced highly efficient solar cells through nanophotonic light trapping[J]. Advanced energy materials, 2018, 8(12): 1702960.

Article  Google Scholar 

ZHANG H, FAN J, ZHANG J. Near-infrared absorption enhancement for perovskite solar cells via the rear grating design[J]. Optical and quantum electronics, 2020, 52: 1–8.

Article  Google Scholar 

DENG K, LIU Z, WANG M, et al. Nanoimprinted grating-embedded perovskite solar cells with improved light management[J]. Advanced functional materials, 2019, 29(19): 1900830.

Article  Google Scholar 

SCHMAGER R, GOMARD G, RICHARDS B S, et al. Nanophotonic perovskite layers for enhanced current generation and mitigation of lead in perovskite solar cells[J]. Solar energy materials and solar cells, 2019, 192: 65–71.

Article  Google Scholar 

CAO F, WANG M, SUN H, et al. Ordered array structures for efficient perovskite solar cells[J]. Engineering reports, 2020, 2(11): e12319.

Article  Google Scholar 

ZHANG Y, LIU H, MIAO Y, et al. High absorptivity of perovskite solar cell enhanced by metal grating[J]. Optoelectronics letters, 2022, 18: 658–661.

Article  ADS  Google Scholar 

ABDELRAOUF O A M, SHAKER A, ALLAM N K. Front dielectric and back plasmonic wire grating for efficient light trapping in perovskite solar cells[J]. Optical materials, 2018, 86: 311–317.

Article  ADS  Google Scholar 

HUANG Y, WU Y, XU X, et al. Nano Ag-enhanced photoelectric conversion efficiency in all-inorganic, hole-transporting-layer-free CsPbIBr2 perovskite solar cells[J]. Chinese physics B, 2022, 31: 128802.

Article  ADS  Google Scholar 

CHU Q Q, SUN Z, DING B, et al Greatly enhanced power conversion efficiency of hole-transport-layer-free perovskite solar cell via coherent interfaces of perovskite and carbon layers[J]. Nano energy, 2020, 77: 105110.

Article  Google Scholar 

QIN P, TANAKA S, ITO S, et al. Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency[J]. Nature communications, 2014, 5: 3834.

Article  ADS  Google Scholar 

GRENEVELD B, NAJAFI M, STEENSMA B, et al. Improved efficiency of NiOx-based p-i-n perovskite solar cells by using PTEG-1 as electron transport layer[J]. APL materials, 2017, 5: 076103.

Article  ADS  Google Scholar 

MOULE A J, SNAITH H J, KAISER M, et al. Optical description of solid-state dye-sensitized solar cells. I. Measurement of layer optical properties[J]. Journal of applied physics, 2009, 106(7): 073111.

Article  ADS  Google Scholar 

GRAY J L. The physics of the solar cell[M]//Handbook of photovoltaic science and engineering. New York: John Wiley & Sons, Ltd, 2003: 61–112.

Chapter  Google Scholar 

HOSSAIN M I, ALHARBI F H, TABET N. Copper oxide as inorganic hole transport material for lead halide perovskite based solar cells[J]. Solar energy, 2015, 120: 370–380.

Article  ADS  Google Scholar 

Comments (0)

No login
gif