Mohr S, Bakal C, Perrimon N. Genomic screening with RNAi: results and challenges. Annu Rev Biochem. 2010;79:37. https://doi.org/10.1146/ANNUREV-BIOCHEM-060408-092949.
Article CAS PubMed PubMed Central Google Scholar
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science. 1979;2012(337):816–21. https://doi.org/10.1126/science.1225829.
Makarova KS, Wolf YI, Iranzo J, Shmakov SA, Alkhnbashi OS, Brouns SJJ, et al. Evolutionary classification of CRISPR–Cas systems: a burst of class 2 and derived variants. Nat Rev Microbiol. 2020;18:67. https://doi.org/10.1038/S41579-019-0299-X.
Article CAS PubMed Google Scholar
Cox DBT, Gootenberg JS, Abudayyeh OO, Franklin B, Kellner MJ, Joung J, et al. RNA editing with CRISPR-Cas13. Science. 2017;358:1019–27. https://doi.org/10.1126/SCIENCE.AAQ0180.
Article CAS PubMed PubMed Central Google Scholar
Ran FA, Hsu PD, Lin CY, Gootenberg JS, Konermann S, Trevino AE, et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell. 2013. https://doi.org/10.1016/J.CELL.2013.08.021.
Article PubMed PubMed Central Google Scholar
Kleinstiver BP, Sousa AA, Walton RT, Tak YE, Hsu JY, Clement K, et al. Engineered CRISPR-Cas12a variants with increased activities and improved targeting ranges for gene, epigenetic and base editing. Nat Biotechnol. 2019;37:276–82. https://doi.org/10.1038/S41587-018-0011-0.
Article CAS PubMed PubMed Central Google Scholar
Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell. 2015;163:759–71. https://doi.org/10.1016/J.CELL.2015.09.038.
Article CAS PubMed PubMed Central Google Scholar
Kim HK, Lee S, Kim Y, Park J, Min S, Choi JW, et al. High-throughput analysis of the activities of xCas9, SpCas9-NG and SpCas9 at matched and mismatched target sequences in human cells. Nat Biomed Eng. 2020. https://doi.org/10.1038/s41551-019-0505-1.
Article PubMed PubMed Central Google Scholar
Shmakov S, Abudayyeh OO, Makarova KS, Wolf YI, Gootenberg JS, Semenova E, et al. Discovery and functional characterization of diverse class 2 CRISPR-Cas systems. Mol Cell. 2015;60:385–97. https://doi.org/10.1016/J.MOLCEL.2015.10.008.
Article CAS PubMed PubMed Central Google Scholar
Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW, Levy JM, et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature. 2019;576:149–57. https://doi.org/10.1038/s41586-019-1711-4.
Article CAS PubMed PubMed Central Google Scholar
Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature. 2016;533:420–4. https://doi.org/10.1038/nature17946.
Article CAS PubMed PubMed Central Google Scholar
Bock C, Datlinger P, Chardon F, Coelho MA, Dong MB, Lawson KA, et al. High-content CRISPR screening. Nature Reviews Methods Primers. 2022;2:1–23. https://doi.org/10.1038/s43586-021-00093-4.
Anzalone AV, Koblan LW, Liu DR. Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors. Nat Biotechnol. 2020;38:824–44. https://doi.org/10.1038/s41587-020-0561-9.
Article CAS PubMed Google Scholar
Pickar-Oliver A, Gersbach CA. The next generation of CRISPR–Cas technologies and applications. Nat Rev Mol Cell Biol. 2019;20:490–507. https://doi.org/10.1038/s41580-019-0131-5.
Article CAS PubMed PubMed Central Google Scholar
Doench JG. Am I ready for CRISPR? A user’s guide to genetic screens. Nat Rev Genet. 2018;19:67–80. https://doi.org/10.1038/nrg.2017.97.
Article CAS PubMed Google Scholar
Joung J, Konermann S, Gootenberg JS, Abudayyeh OO, Platt RJ, Brigham MD, et al. Genome-scale CRISPR-Cas9 knockout and transcriptional activation screening. Nat Protoc. 2017;12:828–63. https://doi.org/10.1038/nprot.2017.016.
Article CAS PubMed PubMed Central Google Scholar
Hart T, Tong AHY, Chan K, van Leeuwen J, Seetharaman A, Aregger M, et al. Evaluation and design of genome-wide CRISPR/SpCas9 knockout screens. G3 Genes Genomes Genet. 2017;7:2719–27. https://doi.org/10.1534/G3.117.041277/-/DC1.
Wang T, Wei JJ, Sabatini DM, Lander ES. Genetic screens in human cells using the CRISPR-Cas9 system. Science. 1979;2014(343):80–4. https://doi.org/10.1126/science.1246981.
Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA, Mikkelson T, et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science. 2014;343:84–7. https://doi.org/10.1126/science.1247005.
Article CAS PubMed Google Scholar
Soares F, Chen B, Lee JB, Ahmed M, Ly D, Tin E, et al. CRISPR screen identifies genes that sensitize AML cells to double-negative T-cell therapy. Blood. 2021;137:2171–81. https://doi.org/10.1182/blood.2019004108.
Article CAS PubMed Google Scholar
Zou X, Koh GCC, Nanda AS, Degasperi A, Urgo K, Roumeliotis TI, et al. A systematic CRISPR screen defines mutational mechanisms underpinning signatures caused by replication errors and endogenous DNA damage. Nat Cancer. 2021;2:643–57. https://doi.org/10.1038/s43018-021-00200-0.
Article CAS PubMed PubMed Central Google Scholar
Wei L, Lee D, Law C-T, Zhang MS, Shen J, Chin DW-C, et al. Genome-wide CRISPR/Cas9 library screening identified PHGDH as a critical driver for Sorafenib resistance in HCC. Nat Commun. 2019;10:4681. https://doi.org/10.1038/s41467-019-12606-7.
Article CAS PubMed PubMed Central Google Scholar
Bajaj J, Hamilton M, Shima Y, Chambers K, Spinler K, Van Nostrand EL, et al. An in vivo genome-wide CRISPR screen identifies the RNA-binding protein Staufen2 as a key regulator of myeloid leukemia. Nat Cancer. 2020;1:410–22. https://doi.org/10.1038/s43018-020-0054-2.
Article CAS PubMed PubMed Central Google Scholar
Dai M, Yan G, Wang N, Daliah G, Edick AM, Poulet S, et al. In vivo genome-wide CRISPR screen reveals breast cancer vulnerabilities and synergistic mTOR/Hippo targeted combination therapy. Nat Commun. 2021;12:3055. https://doi.org/10.1038/s41467-021-23316-4.
Article CAS PubMed PubMed Central Google Scholar
Fu G, Guy CS, Chapman NM, Palacios G, Wei J, Zhou P, et al. Metabolic control of TFH cells and humoral immunity by phosphatidylethanolamine. Nature. 2021;595:724–9. https://doi.org/10.1038/s41586-021-03692-z.
Article CAS PubMed PubMed Central Google Scholar
Yan F, Li J, Milosevic J, Petroni R, Liu S, Shi Z, et al. KAT6A and ENL form an epigenetic transcriptional control module to drive critical leukemogenic gene-expression programs. Cancer Discov. 2022;12:792–811. https://doi.org/10.1158/2159-8290.CD-20-1459.
Article CAS PubMed PubMed Central Google Scholar
Khan DH, Mullokandov M, Wu Y, Voisin V, Gronda M, Hurren R, et al. Mitochondrial carrier homolog 2 is necessary for AML survival. Blood. 2020;136:81–92. https://doi.org/10.1182/BLOOD.2019000106/454408/MITOCHONDRIAL-CARRIER-HOMOLOG-2-MTCH2-IS-NECESSARY.
Lee D, Kang S-H, Choi D, Ko M, Choi E, Ahn H, et al. Genome wide CRISPR screening reveals a role for sialylation in the tumorigenesis and chemoresistance of acute myeloid leukemia cells. Cancer Lett. 2021;510:37–47. https://doi.org/10.1016/j.canlet.2021.04.006.
Article CAS PubMed Google Scholar
Oshima K, Zhao J, Pérez-Durán P, Brown JA, Patiño-Galindo JA, Chu T, et al. Mutational and functional genetics mapping of chemotherapy resistance mechanisms in relapsed acute lymphoblastic leukemia. Nat Cancer. 2020;1:1113–27. https://doi.org/10.1038/s43018-020-00124-1.
Article CAS PubMed PubMed Central Google Scholar
Autry RJ, Paugh SW, Carter R, Shi L, Liu J, Ferguson DC, et al. Integrative genomic analyses reveal mechanisms of glucocorticoid resistance in acute lymphoblastic leukemia. Nat Cancer. 2020;1:329. https://doi.org/10.1038/S43018-020-0037-3.
Article CAS PubMed PubMed Central Google Scholar
Zhang P, Brinton LT, Gharghabi M, Sher S, Williams K, Cannon M, et al. Targeting OXPHOS de novo purine synthesis as the nexus of FLT3 inhibitor–mediated synergistic antileukemic actions. Sci Adv. 2022;8:9005. https://doi.org/10.1126/SCIADV.ABP9005/SUPPL_FILE/SCIADV.ABP9005_DATA_FILES_S1_TO_S6.ZIP.
Comments (0)