Yang J, Hirai Y, Iida K, Ito S, Trumm M, Terada S, et al. Integrated-gut-liver-on-a-chip platform as an in vitro human model of non-alcoholic fatty liver disease. Commun Biol. 2023;6:310. https://doi.org/10.1038/s42003-023-04710-8
Article CAS PubMed Google Scholar
Wiest R, Albillos A, Trauner M, Bajaj JS, Jalan R. Targeting the gut-liver axis in liver disease. J Hepatol. 2017;67:1084–1103. https://doi.org/10.1016/j.jhep.2017.05.007
Tilg H, Burcelin R, Tremaroli V. Liver tissue microbiome in NAFLD: next step in understanding the gut-liver axis? Gut. 2020;69:1373–1374. https://doi.org/10.1136/gutjnl-2019-320490
Kotsiliti E, Leone V, Schuehle S, Govaere O, Li H, Wolf MJ, et al. Intestinal B-cells license metabolic T-cell activation in NASH microbiota/antigen-independently and contribute to fibrosis by IgA-FcR signalling. J Hepatol. 2023;79:296–313. https://doi.org/10.1016/j.jhep.2023.04.037. (Online ahead of print)
Article CAS PubMed PubMed Central Google Scholar
Luo L, Chang Y, Sheng L. Gut-liver axis in the progression of nonalcoholic fatty liver disease: from the microbial derivatives-centered perspective. Life Sci. 2023;321: 121614. https://doi.org/10.1016/j.lfs.2023.121614
Article CAS PubMed Google Scholar
Rahman K, Desai C, Iyer SS, Thorn NE, Kumar P, Liu Y, et al. Loss of junctional adhesion molecule A promotes severe steatohepatitis in mice on a diet high in saturated fat, fructose, and cholesterol. Gastroenterology. 2016;151:733-746.e12. https://doi.org/10.1053/j.gastro.2016.06.022
Article CAS PubMed Google Scholar
Teratani T, Mikami Y, Nakamoto N, Suzuki T, Harada Y, Okabayashi K, et al. The liver-brain-gut neural arc maintains the T(reg) cell niche in the gut. Nature. 2020;585:591–596. https://doi.org/10.1038/s41586-020-2425-3
Article CAS PubMed Google Scholar
Nagoya T, Kamimura K, Inoue R, Ko M, Owaki T, Niwa Y, et al. Ghrelin-insulin-like growth factor-1 axis is activated via autonomic neural circuits in the nonalcoholic fatty liver disease. Neurogastroenterol Motil. 2020;32:e13799. https://doi.org/10.1111/nmo.13799
Ko M, Kamimura K, Owaki T, Nagoya T, Sakai N, Nagayama I, et al. Modulation of serotonin in the gut-liver neural axis ameliorates the fatty and fibrotic changes in non-alcoholic fatty liver. Dis Model Mech. 2021;14:dmm048922. https://doi.org/10.1242/dmm.048922
Article CAS PubMed PubMed Central Google Scholar
Owaki T, Kamimura K, Ko M, Nagayama I, Nagoya T, Shibata O, et al. Involvement of the liver-gut peripheral neural axis in non-alcoholic fatty liver disease pathologies via hepatic HTR2A. Dis Model Mech. 2022;15:dmm049612. https://doi.org/10.1242/dmm.049612
Article CAS PubMed PubMed Central Google Scholar
Inoue R, Kamimura K, Nagoya T, Sakai N, Yokoo T, Goto R, et al. Effect of a neural relay on liver regeneration in mice: activation of serotonin release from the gastrointestinal tract. FEBS Open Bio. 2018;8:449–460. https://doi.org/10.1002/2211-5463.12382
Article CAS PubMed PubMed Central Google Scholar
Ibrahim SH, Hirsova P, Malhi H, Gores GJ. Animal models of nonalcoholic steatohepatitis: eat, delete, and inflame. Dig Dis Sci. 2016;61:1325–1336. https://doi.org/10.1007/s10620-015-3977-1
Vrekoussis T, Chaniotis V, Navrozoglou I, Dousias V, Pavlakis K, Stathopoulos EN, et al. Image analysis of breast cancer immunohistochemistry-stained sections using ImageJ: an RGB-based model. Anticancer Res. 2009;29:4995–4998
Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature. 1999;402:656–660. https://doi.org/10.1038/45230
Article CAS PubMed Google Scholar
Smith RG, Van der Ploeg LH, Howard AD, Feighner SD, Cheng K, Hickey GJ, et al. Peptidomimetic regulation of growth hormone secretion. Endocr Rev. 1997;18:621–645. https://doi.org/10.1210/edrv.18.5.0316
Article CAS PubMed Google Scholar
Jeanneteau FD, Lambert WM, Ismaili N, Bath KG, Lee FS, Garabedian MJ, et al. BDNF and glucocorticoids regulate corticotrophin-releasing hormone (CRH) homeostasis in the hypothalamus. Proc Natl Acad Sci. 2012;109:1305–1310. https://doi.org/10.1073/pnas.1114122109
Article PubMed PubMed Central Google Scholar
Givalois L, Naert G, Rage F, Ixart G, Arancibia S, Tapia-Arancibia L. A single brain-derived neurotrophic factor injection modifies hypothalamo-pituitary-adrenocortical axis activity in adult male rats. Mol Cell Neurosci. 2004;27:280–295. https://doi.org/10.1016/j.mcn.2004.07.002
Article CAS PubMed Google Scholar
Barbarino A, Corsello SM, Della Casa S, Tofani A, Sciuto R, Rota CA, et al. Corticotropin-releasing hormone inhibition of growth hormone-releasing hormone-induced growth hormone release in man. J Clin Endocrinol Metab. 1990;71:1368–1374. https://doi.org/10.1210/jcem-71-5-1368
Article CAS PubMed Google Scholar
Xu B, Goulding EH, Zang K, Cepoi D, Cone RD, Jones KR, et al. Brain-derived neurotrophic factor regulates energy balance downstream of melanocortin-4 receptor. Nat Neurosci. 2003;6:736–742. https://doi.org/10.1038/nn1073
Article CAS PubMed PubMed Central Google Scholar
Nishizawa H, Iguchi G, Murawaki A, Fukuoka H, Hayashi Y, Kaji H, et al. Nonalcoholic fatty liver disease in adult hypopituitary patients with GH deficiency and the impact of GH replacement therapy. Eur J Endocrinol. 2012;167:67–74. https://doi.org/10.1530/EJE-12-0252
Article CAS PubMed Google Scholar
Ichikawa T, Hamasaki K, Ishikawa H, Ejima E, Eguchi K, Nakao K. Nonalcoholic steatohepatitis and hepatic steatosis in patients with adult onset growth hormone deficiency. Gut. 2003;52:914. https://doi.org/10.1136/gut.52.6.914
Article CAS PubMed PubMed Central Google Scholar
Takahashi Y, Iida K, Takahashi K, Yoshioka S, Fukuoka H, Takeno R, et al. Growth hormone reverses non-alcoholic steatohepatitis in a patient with adult growth hormone deficiency. Gastroenterology. 2007;132:938–943. https://doi.org/10.1053/j.gastro.2006.12.024
Article CAS PubMed Google Scholar
Takahashi Y. Essential roles of growth hormone (GH) and insulin-like growth factor-I (IGF-I) in the liver. Endocr J. 2012;59:955–962. https://doi.org/10.1507/endocrj.EJ12-0322
Article CAS PubMed Google Scholar
Adams LA, Feldstein A, Lindor KD, Angulo P. Nonalcoholic fatty liver disease among patients with hypothalamic and pituitary dysfunction. Hepatology. 2004;39:909–914. https://doi.org/10.1002/hep.20140
Arturi F, Succurro E, Procopio C, Pedace E, Mannino GC, Lugara M, et al. Nonalcoholic fatty liver disease is associated with low circulating levels of insulin-like growth factor-I. J Clin Endocrinol Metab. 2011;96:E1640–E1644. https://doi.org/10.1210/jc.2011-1227
Article CAS PubMed Google Scholar
Fusco A, Miele L, D’Uonnolo A, Forgione A, Riccardi L, Cefalo C, et al. Nonalcoholic fatty liver disease is associated with increased GHBP and reduced GH/IGF-I levels. Clin Endocrinol (Oxf). 2012;77:531–536. https://doi.org/10.1111/j.1365-2265.2011.04291.x
Article CAS PubMed Google Scholar
Sumida Y, Yonei Y, Tanaka S, Mori K, Kanemasa K, Imai S, et al. Lower levels of insulin-like growth factor-1 standard deviation score are associated with histological severity of non-alcoholic fatty liver disease. Hepatol Res. 2015;45:771–781. https://doi.org/10.1111/hepr.12408
Article CAS PubMed Google Scholar
Matsumoto R, Fukuoka H, Iguchi G, Nishizawa H, Bando H, Suda K, et al. Long-term effects of growth hormone replacement therapy on liver function in adult patients with growth hormone deficiency. Growth Horm IGF Res. 2014;24:174–179. https://doi.org/10.1016/j.ghir.2014.07.002
Article CAS PubMed Google Scholar
Nishizawa H, Iguchi G, Fukuoka H, Takahashi M, Suda K, Bando H, et al. IGF-I induces senescence of hepatic stellate cells and limits fibrosis in a p53-dependent manner. Sci Rep. 2016;6:34605. https://doi.org/10.1038/srep34605
Article CAS PubMed PubMed Central Google Scholar
Sobrevals L, Rodriguez C, Romero-Trevejo JL, Gondi G, Monreal I, Paneda A, et al. Insulin-like growth factor I gene transfer to cirrhotic liver induces fibrolysis and reduces fibrogenesis leading to cirrhosis reversion in rats. Hepatology. 2010;51:912–921. https://doi.org/10.1002/hep.23412
Article CAS PubMed Google Scholar
Ren J, Anversa P. The insulin-like growth factor I system: physiological and pathophysiological implication in cardiovascular diseases associated with metabolic syndrome. Biochem Pharmacol. 2015;93:409–417. https://doi.org/10.1016/j.bcp.2014.12.006
Article CAS PubMed Google Scholar
Qian Y, Berryman
Comments (0)