J. Z. Setschenow. Über die Konstitution der Salzlösungen auf Grund ihres Verhaltens zu Kohlensäure. Z. Physik. Chem. 4 (1889) 117-125. https://doi.org/10.1515/zpch-1889-0409. (in German)
F.A. Long, W.F. McDevit. Activity coefficients of nonelectrolyte solutes in aqueous salt solutions. Chem. Rev. 51 (1952) 119-169. https://doi.org/10.1021/cr60158a004.
N. Ni, M.M. El-Sayed, T.Sanghvi, S.H. Yalkowsky. Estimation of the effect of NaCl on the solubility of organic compounds in aqueous solutions. J. Pharm. Sci. 89 (2000) 1620-1625. https://doi.org/10.1002/1520-6017(200012)89:12.
S. Endo, A. Pfennigsdorff, K.-U. Goss. Salting-out effect in aqueous NaCl solutions: trends with size & polarity of solute molecules. Environ. Sci. Technol. 46 (2012) 1496-1503. https://doi.org/10.1021/es203183z.
S.H. Lubbad, B.K.A. Al-Roos, F.S. Kodeh. Adsorptive–removal of bromothymol blue as acidic–dye probe from water solution using Latvian sphagnum peat moss: thermodynamic assessment, kinetic & isotherm modeling. Curr. Green Chem.6 (2019) 53-61. https://doi.org/10.2174/2452273203666190114144546.
M. Pudipeddi, A.T.M.Serajuddin. Trends in solubility of polymorphs. J. Pharm. Sci. 94 (2005) 929-939. https://doi.org/10.1002/jps.20302.
P. Friberger, G. Åberg. Some physicochemical properties of the racemates and optically active isomers of two local anaesthetic compounds.Acta Pharm. Suec. 8 (1971) 361-364.
S.K. El-Arini, D. Giron, H. Leuenberger. Solubility properties of racemic praziquantel and its enantiomers. Pharm. Dev. Tech. 3 (1998) 557-564. https://doi.org/10.3109/10837459809028638.
A. Avdeef,E. Fuguet, A.Llinas, C.Ràfols, E. Bosch, G. Völgyi,T. Verbić, E. Boldyreva, K. Takács-Novák. Equilibrium solubilitymeasurement of ionizable drugs − consensus recommendations forimproving data quality. ADMET DMPK 4 (2016) 117−178. https://doi.org/10.5599/admet.4.2.292.
W.H.Xie, W.Y. Shiu, D. Mackay. A review of the effect of saltson the solubility of organic compounds in seawater. Mar. Environ. Res. 44 (1997) 429-444.
A. Al-Maaieh, D.R. Flanagan. Salt effects on caffeine solubility, distribution, & self-association. J. Pharm. Sci. 91 (2002) 1000-1008. https://doi.org/10.1002/jps.10046.
E. Furia, A. Beneduci, L. Malacaria, A. Fazio, C. La Torre, P. Plastina.Modeling the solubility of phenolic acids in aqueous media at 37oC. Molecules 26 (2021) 6500. https://doi.org/10.3390/molecules26216500.
S.H. Lubbad, B.K.A. Al–Roos, F.S. Kodeh. Adsorptive–removal of bromothymol blue as acidic–dye probe from water solution using Latvian sphagnum peat moss: thermodynamic assessment, kinetic & isotherm modeling. Curr. Green Chem. 6 (2019) 53-61. https://doi.org/10.2174/2452273203666190114144546.
G. Schill. Photometric determination of amines and quaternary ammonium compounds with bromothymol blue. Part 2. Association of bromothymol blue in aqueous solutions. Acta Pharm. Suec. 1 (1964) 101-122.
V.D. Gupta, D.E. Cadwallader. Determination of first pKa’ value &partition coefficients of bromothymol blue. J. Pharm. Sci.57 (1968) 2140-2142. https://doi.org/10.1002/jps.2600571224.
G. Völgyi, A. Marosi, K. Takács-Novák, A. Avdeef. Salt solubility products of diprenorphinehydro-chloride, codeine and lidocaine hydrochlorides and phosphates – novel method of data analysis not dependent on explicit solubility equations. ADMET DMPK 1 (2013) 48-62. https://doi.org/10.5599/admet.1.4.24.
A. Avdeef. Absorption and Drug Development, 2nd Ed., John Wiley & Sons, Inc., Hoboken, NJ, 2012. ISBN 978-1-118-05745-2.
A. Avdeef. Anomalous Solubility Behavior of Several Acidic Drugs. ADMET DMPK 2 (2014) 33-42. https://doi.org/10.5599/admet.2.1.30.
A.Avdeef. Phosphate precipitates and water-soluble aggregates in re-examined solubility-pHdata of twenty-five basic drugs. ADMET DMPK 2 (2014) 43-55. https://doi.org/10.5599/admet.2.1.31.
A. Avdeef. Suggested improvements for measurement of equilibrium solubility-pH of ionizable drugs. ADMET DMPK 3 (2015) 84-109. https://doi.org/10.5599/admet.3.2.193.
G. Butcher, J. Comer, A. Avdeef. pKa-critical Interpretations of solubility–pH profiles: PG-300995 and NSC-639829 case studies. ADMET DMPK 3 (2015) 131-140. https://doi.org/10.5599/admet.3.2.182.
A. Pobudkowska, C. Ràfols, X. Subirats, E. Bosch, A. Avdeef. Phenothiazines solution complexity – determination of pKa and solubility-pH profiles exhibiting sub-micellar aggregation at 25 and 37 oC.Eur. J. Pharm. Sci. 93 (2016) 163-176.https://doi.org/10.1016/j.ejps.2016.07.013.
C.A.S. Bergström, A. Avdeef. Perspectives in solubility measurement and interpretation. ADMET DMPK 7 (2019) 88-105. http://dx.doi.org/10.5599/admet.686.
O.S. Marković, M.P. Pešić, A.V. Shah, A.T.M. Serajuddin, T.Ž. Verbić, A. Avdeef. Solubility-pH profile of desipramine hydrochloride in saline phosphate buffer: enhanced solubility due to drug-buffer aggregates. Eur. J. Pharm. Sci. 133 (2019) 264–274. https://doi:10.1016/j.ejps.2019.03.014.
E. Fuguet, X. Subirats, C. Ràfols, E. Bosch, A. Avdeef. Ionizable drug self-associations and the solubility dependence on pH: detection of aggregates in saturated solutions using mass spectrometry (ESI-Q-TOF-MS/MS). Mol. Pharmaceutics 18 (2021) 2311-2321. https://doi.org/10.1021/acs.molpharmaceut.1c00131.
O.S. Marković, N.G. Patel, A.T.M. Serajuddin, A. Avdeef, T.Ž. Verbić. Nortriptyline hydrochloride solubility-pHprofiles in a saline phosphate buffer: drug-phosphate complexes and multiple pHmaxdomains with a Gibbs Phase Rule"soft" constraints. Mol. Pharmaceutics 19 (2022) 710-719. https://doi.org/10.1021/acs.molpharmaceut.1c00919.
A. Avdeef, J.J. Bucher. Accurate measurements of the concentration of hydrogen ions with a glass electrode: calibrations using the Prideaux and other universal buffer solutions and a computer-con-trolled automatic titrator.Anal. Chem. 50 (1978) 2137-2142. https://doi.org/10.1021/ac50036a045.
F.H. Sweeton, R.E. Mesmer, C.F. Baes, Jr. Acidity measurements at elevated temperatures. 7. Dissociation of water.J. Solut. Chem. 3 (1974) 191-214. https://doi.org/10.1007/BF00645633.
M.H. Abraham, J. Le. The correlation and prediction of the solubility of compounds in water using an amended solvation energy relationship.J. Pharm. Sci. 88(1999) 868-880.https://doi.org/10.1021/js9901007.
J.A. Platts, D.Butina, M.H.Abraham,A. Hersey. Estimation of molecular linear free energy relation descriptors using a group contribution approach. J. Chem. Inf. Comput. Sci. 39 (1999) 835-845. https://doi.org/10.1021/ci980339t.
A. Avdeef, M. Kansy. Predicting solubility of newly-approved drugs (2016–2020) with a simple ABSOLV and GSE(Flexible-Acceptor) consensus model outperforming Random Forest regression. J. Solution Chem. 51 (2022) 1020-1055. https://doi.org/10.1007/s10953-022-01141-7.
T. Shimada, K. Tochinai, T. Hasegawa. Determination of pH dependent structure of thymol blue revealed by cooperative analytical method of quantum chemistry and multivariate analysis of electronic absorption spectra. Bull. Chem. Soc. Jpn. 92 (2019) 1759-1766. https://doi.org/10.1246/bcsj.20190118.
K. Yamaguchi, Z. Tamura, M. Maeda. (1997). Molecular structure of bromophenol blue having a γ-sultone ring. Anal. Sci. 13 (1997) 1057-1058. https://doi.org/10.2116/analsci.13.1057.
P. Balderas-Hernández, M.T. Ramírez, A. Rojas-Hernández, A. Gutiérez. Determination of pKa’s for thymol blue in aqueous medium: evidence of dimer formation. Talanta 46 (1998) 1439-1452. https://doi.org/10.1016/S0039-9140(98)00015-0.
T.Ž. Verbić, K.Y. Tam, D.Ž. Veljković, A.T.M. Serajuddin, A. Avdeef. Clofazimine pKadetermination by potentiometry and spectrophotometry – reverse cosolvent dependence as an indicator of presence of dimers in aqueous solutions. Mol. Pharmaceutics (2023). https://doi.org/10.1021/acs.molpharmaceut.3c00172.
Comments (0)