Encapsulated polycaprolactone with triazole derivatives and selenium nanoparticles as promising antiproliferative and anticancer agents

J. Z. Setschenow. Über die Konstitution der Salzlösungen auf Grund ihres Verhaltens zu Kohlensäure. Z. Physik. Chem. 4 (1889) 117-125. https://doi.org/10.1515/zpch-1889-0409. (in German)

F.A. Long, W.F. McDevit. Activity coefficients of nonelectrolyte solutes in aqueous salt solutions. Chem. Rev. 51 (1952) 119-169. https://doi.org/10.1021/cr60158a004.

N. Ni, M.M. El-Sayed, T.Sanghvi, S.H. Yalkowsky. Estimation of the effect of NaCl on the solubility of organic compounds in aqueous solutions. J. Pharm. Sci. 89 (2000) 1620-1625. https://doi.org/10.1002/1520-6017(200012)89:12.

S. Endo, A. Pfennigsdorff, K.-U. Goss. Salting-out effect in aqueous NaCl solutions: trends with size & polarity of solute molecules. Environ. Sci. Technol. 46 (2012) 1496-1503. https://doi.org/10.1021/es203183z.

S.H. Lubbad, B.K.A. Al-Roos, F.S. Kodeh. Adsorptive–removal of bromothymol blue as acidic–dye probe from water solution using Latvian sphagnum peat moss: thermodynamic assessment, kinetic & isotherm modeling. Curr. Green Chem.6 (2019) 53-61. https://doi.org/10.2174/2452273203666190114144546.

M. Pudipeddi, A.T.M.Serajuddin. Trends in solubility of polymorphs. J. Pharm. Sci. 94 (2005) 929-939. https://doi.org/10.1002/jps.20302.

P. Friberger, G. Åberg. Some physicochemical properties of the racemates and optically active isomers of two local anaesthetic compounds.Acta Pharm. Suec. 8 (1971) 361-364.

S.K. El-Arini, D. Giron, H. Leuenberger. Solubility properties of racemic praziquantel and its enantiomers. Pharm. Dev. Tech. 3 (1998) 557-564. https://doi.org/10.3109/10837459809028638.

A. Avdeef,E. Fuguet, A.Llinas, C.Ràfols, E. Bosch, G. Völgyi,T. Verbić, E. Boldyreva, K. Takács-Novák. Equilibrium solubilitymeasurement of ionizable drugs − consensus recommendations forimproving data quality. ADMET DMPK 4 (2016) 117−178. https://doi.org/10.5599/admet.4.2.292.

W.H.Xie, W.Y. Shiu, D. Mackay. A review of the effect of saltson the solubility of organic compounds in seawater. Mar. Environ. Res. 44 (1997) 429-444.

A. Al-Maaieh, D.R. Flanagan. Salt effects on caffeine solubility, distribution, & self-association. J. Pharm. Sci. 91 (2002) 1000-1008. https://doi.org/10.1002/jps.10046.

E. Furia, A. Beneduci, L. Malacaria, A. Fazio, C. La Torre, P. Plastina.Modeling the solubility of phenolic acids in aqueous media at 37oC. Molecules 26 (2021) 6500. https://doi.org/10.3390/molecules26216500.

S.H. Lubbad, B.K.A. Al–Roos, F.S. Kodeh. Adsorptive–removal of bromothymol blue as acidic–dye probe from water solution using Latvian sphagnum peat moss: thermodynamic assessment, kinetic & isotherm modeling. Curr. Green Chem. 6 (2019) 53-61. https://doi.org/10.2174/2452273203666190114144546.

G. Schill. Photometric determination of amines and quaternary ammonium compounds with bromothymol blue. Part 2. Association of bromothymol blue in aqueous solutions. Acta Pharm. Suec. 1 (1964) 101-122.

V.D. Gupta, D.E. Cadwallader. Determination of first pKa’ value &partition coefficients of bromothymol blue. J. Pharm. Sci.57 (1968) 2140-2142. https://doi.org/10.1002/jps.2600571224.

G. Völgyi, A. Marosi, K. Takács-Novák, A. Avdeef. Salt solubility products of diprenorphinehydro-chloride, codeine and lidocaine hydrochlorides and phosphates – novel method of data analysis not dependent on explicit solubility equations. ADMET DMPK 1 (2013) 48-62. https://doi.org/10.5599/admet.1.4.24.

A. Avdeef. Absorption and Drug Development, 2nd Ed., John Wiley & Sons, Inc., Hoboken, NJ, 2012. ISBN 978-1-118-05745-2.

A. Avdeef. Anomalous Solubility Behavior of Several Acidic Drugs. ADMET DMPK 2 (2014) 33-42. https://doi.org/10.5599/admet.2.1.30.

A.Avdeef. Phosphate precipitates and water-soluble aggregates in re-examined solubility-pHdata of twenty-five basic drugs. ADMET DMPK 2 (2014) 43-55. https://doi.org/10.5599/admet.2.1.31.

A. Avdeef. Suggested improvements for measurement of equilibrium solubility-pH of ionizable drugs. ADMET DMPK 3 (2015) 84-109. https://doi.org/10.5599/admet.3.2.193.

G. Butcher, J. Comer, A. Avdeef. pKa-critical Interpretations of solubility–pH profiles: PG-300995 and NSC-639829 case studies. ADMET DMPK 3 (2015) 131-140. https://doi.org/10.5599/admet.3.2.182.

A. Pobudkowska, C. Ràfols, X. Subirats, E. Bosch, A. Avdeef. Phenothiazines solution complexity – determination of pKa and solubility-pH profiles exhibiting sub-micellar aggregation at 25 and 37 oC.Eur. J. Pharm. Sci. 93 (2016) 163-176.https://doi.org/10.1016/j.ejps.2016.07.013.

C.A.S. Bergström, A. Avdeef. Perspectives in solubility measurement and interpretation. ADMET DMPK 7 (2019) 88-105. http://dx.doi.org/10.5599/admet.686.

O.S. Marković, M.P. Pešić, A.V. Shah, A.T.M. Serajuddin, T.Ž. Verbić, A. Avdeef. Solubility-pH profile of desipramine hydrochloride in saline phosphate buffer: enhanced solubility due to drug-buffer aggregates. Eur. J. Pharm. Sci. 133 (2019) 264–274. https://doi:10.1016/j.ejps.2019.03.014.

E. Fuguet, X. Subirats, C. Ràfols, E. Bosch, A. Avdeef. Ionizable drug self-associations and the solubility dependence on pH: detection of aggregates in saturated solutions using mass spectrometry (ESI-Q-TOF-MS/MS). Mol. Pharmaceutics 18 (2021) 2311-2321. https://doi.org/10.1021/acs.molpharmaceut.1c00131.

O.S. Marković, N.G. Patel, A.T.M. Serajuddin, A. Avdeef, T.Ž. Verbić. Nortriptyline hydrochloride solubility-pHprofiles in a saline phosphate buffer: drug-phosphate complexes and multiple pHmaxdomains with a Gibbs Phase Rule"soft" constraints. Mol. Pharmaceutics 19 (2022) 710-719. https://doi.org/10.1021/acs.molpharmaceut.1c00919.

A. Avdeef, J.J. Bucher. Accurate measurements of the concentration of hydrogen ions with a glass electrode: calibrations using the Prideaux and other universal buffer solutions and a computer-con-trolled automatic titrator.Anal. Chem. 50 (1978) 2137-2142. https://doi.org/10.1021/ac50036a045.

F.H. Sweeton, R.E. Mesmer, C.F. Baes, Jr. Acidity measurements at elevated temperatures. 7. Dissociation of water.J. Solut. Chem. 3 (1974) 191-214. https://doi.org/10.1007/BF00645633.

M.H. Abraham, J. Le. The correlation and prediction of the solubility of compounds in water using an amended solvation energy relationship.J. Pharm. Sci. 88(1999) 868-880.https://doi.org/10.1021/js9901007.

J.A. Platts, D.Butina, M.H.Abraham,A. Hersey. Estimation of molecular linear free energy relation descriptors using a group contribution approach. J. Chem. Inf. Comput. Sci. 39 (1999) 835-845. https://doi.org/10.1021/ci980339t.

A. Avdeef, M. Kansy. Predicting solubility of newly-approved drugs (2016–2020) with a simple ABSOLV and GSE(Flexible-Acceptor) consensus model outperforming Random Forest regression. J. Solution Chem. 51 (2022) 1020-1055. https://doi.org/10.1007/s10953-022-01141-7.

T. Shimada, K. Tochinai, T. Hasegawa. Determination of pH dependent structure of thymol blue revealed by cooperative analytical method of quantum chemistry and multivariate analysis of electronic absorption spectra. Bull. Chem. Soc. Jpn. 92 (2019) 1759-1766. https://doi.org/10.1246/bcsj.20190118.

K. Yamaguchi, Z. Tamura, M. Maeda. (1997). Molecular structure of bromophenol blue having a γ-sultone ring. Anal. Sci. 13 (1997) 1057-1058. https://doi.org/10.2116/analsci.13.1057.

P. Balderas-Hernández, M.T. Ramírez, A. Rojas-Hernández, A. Gutiérez. Determination of pKa’s for thymol blue in aqueous medium: evidence of dimer formation. Talanta 46 (1998) 1439-1452. https://doi.org/10.1016/S0039-9140(98)00015-0.

T.Ž. Verbić, K.Y. Tam, D.Ž. Veljković, A.T.M. Serajuddin, A. Avdeef. Clofazimine pKadetermination by potentiometry and spectrophotometry – reverse cosolvent dependence as an indicator of presence of dimers in aqueous solutions. Mol. Pharmaceutics (2023). https://doi.org/10.1021/acs.molpharmaceut.3c00172.

Comments (0)

No login
gif