[1] M. Chauhan, Sonali, S. Shekhar, B. Yadav, V. Garg, R. Dutt, A.K. Mehata, P. Goswami, B. Koch, M.S. Muthu, R.P. Singh. AS1411 aptamer/RGD dual functionalized theranostic chitosan-PLGA nanoparticles for brain cancer treatment and imaging. Biomaterials Advances 160 (2024) 213833. https://doi.org/10.1016/j.bioadv.2024.213833
[2] S. Ganguly, S. Dewanjee, R. Sen, D. Chattopadhyay, S. Ganguly, R. Gaonkar, M.C. Debnath. Apigenin-loaded galactose tailored PLGA nanoparticles: A possible strategy for liver targeting to treat hepatocellular carcinoma. Colloids and Surfaces B: Biointerfaces 204 (2021) 111778. https://doi.org/10.1016/j.colsurfb.2021.111778
[3] A.A. Rouhi, A. Valizadeh, N. Sedghizadeh, L. Beba, H. Dadashi, M. Kazempour, K. Adibkia, S. Vandghanooni, M. Eskandani. Targeted therapy of gastric cancer with gingerol-loaded hyaluronic acid/PEG-coated PLGA nanoparticles: Development and physicochemical evaluation. Journal of Drug Delivery Science and Technology 97 (2024) 105734. https://doi.org/10.1016/j.jddst.2024.105734
[4] W. Mekseriwattana, A. Phungsom, K. Sawasdee, P. Wongwienkham, C. Kuhakarn, P. Chaiyen, K.P. Katewongsa. Dual Functions of Riboflavin‐functionalized Poly(lactic‐co‐glycolic acid) Nanoparticles for Enhanced Drug Delivery Efficiency and Photodynamic Therapy in Triple‐negative Breast Cancer Cells. Photochemistry and Photobiology 97 (2021) 1548-1557. https://doi.org/10.1111/php.13464
[5] Z. Du, Y. Mao, P. Zhang, J. Hu, J. Fu, Q. You, J. Yin. TPGS-Galactose-Modified Polydopamine Co-delivery Nanoparticles of Nitric Oxide Donor and Doxorubicin for Targeted Chemo-Photothermal Therapy against Drug-Resistant Hepatocellular Carcinoma. ACS Applied Materials & Interfaces 13 (2021) 35518-35532. https://doi.org/10.1021/acsami.1c09610
[6] Y.-N. Li, X. Shi, D. Sun, S. Han, Y. Zou, L. Wang, L. Yang, Y. Li, Y. Shi, J. Guo, C.M. O’Driscoll. Delivery of melarsoprol using folate-targeted PEGylated cyclodextrin-based nanoparticles for hepatocellular carcinoma. International Journal of Pharmaceutics 636 (2023) 122791. https://doi.org/10.1016/j.ijpharm.2023.122791
[7] Z. Chen, Y. Liang, X. Feng, Y. Liang, G. Shen, H. Huang, Z. Chen, J. Yu, H. Liu, T. Lin, H. Chen, D. Wu, G. Li, B. Zhao, W. Guo, Y. Hu. Vitamin-B12-conjugated PLGA-PEG nanoparticles incorporating miR-532-3p induce mitochondrial damage by targeting apoptosis repressor with caspase recruitment domain (ARC) on CD320-overexpressed gastric cancer. Materials Science and Engineering: C 120 (2021) 111722. https://doi.org/10.1016/j.msec.2020.111722
[8] J.L. Markman, A. Rekechenetskiy, E. Holler, J.Y. Ljubimova. Nanomedicine therapeutic approaches to overcome cancer drug resistance. Advanced Drug Delivery Reviews 65 (2013) 1866-1879. https://doi.org/10.1016/j.addr.2013.09.019
[9] J. Zhang, E.I. Shishatskaya, T.G. Volova, L.F. da Silva, G.Q. Chen. Polyhydroxyalkanoates (PHA) for therapeutic applications. Materials Science and Engineering: C 86 (2018) 144-150. https://doi.org/10.1016/J.MSEC.2017.12.035
[10] K. Perveen, F. Masood, A. Hameed. Preparation, characterization and evaluation of antibacterial properties of epirubicin loaded PHB and PHBV nanoparticles. International Journal of Biological Macromolecules 144 (2020) 259-266. https://doi.org/10.1016/j.ijbiomac.2019.12.049
[11] G. Babos, J. Rydz, M. Kawalec, M. Klim, A. Fodor-Kardos, L. Trif, T. Feczkó. Poly(3-Hydroxybutyrate)-Based Nanoparticles for Sorafenib and Doxorubicin Anticancer Drug Delivery. International Journal of Molecular Sciences 21 (2020) 7312. https://doi.org/10.3390/ijms21197312
[12] F. Masood, P. Chen, T. Yasin, N. Fatima, F. Hasan, A. Hameed. Encapsulation of Ellipticine in poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) based nanoparticles and its in vitro application. Materials Science and Engineering: C 33 (2013) 1054-1060. https://doi.org/10.1016/j.msec.2012.11.025
[13] C. Zhang, Z. Zhang, L. Zhao. Folate-decorated poly(3-hydroxybutyrate-co-3-hydroxyoctanoate) nanoparticles for targeting delivery: optimization and in vivo antitumor activity. Drug Delivery 23 (2016) 1830-1837. https://doi.org/10.3109/10717544.2015.1122675
[14] E. Kılıçay, M. Demirbilek, M. Türk, E. Güven, B. Hazer, E.B. Denkbas. Preparation and characterization of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHX) based nanoparticles for targeted cancer therapy. European Journal of Pharmaceutical Sciences 44 (2011) 310-320. https://doi.org/10.1016/j.ejps.2011.08.013
[15] S. Lipaikin, A. Dorokhin, G. Ryltseva, A. Oberenko, E. Kiselev, A. Shabanov, T. Volova, E. Shishatskaya. Spray-dried cyclophosphamide-loaded polyhydroxyalkanoate microparticles: design and characterization. ADMET and DMPK (2024). https://doi.org/10.5599/admet.2434
[16] A. Rodríguez-Contreras, C. Canal, M. Calafell-Monfort, M.-P. Ginebra, G. Julio-Moran, M.-S. Marqués-Calvo. Methods for the preparation of doxycycline-loaded phb micro- and nano-spheres. European Polymer Journal 49 (2013) 3501-3511. https://doi.org/10.1016/j.eurpolymj.2013.08.010
[17] F. Shakeri, S. Shakeri, M. Hojjatoleslami. Preparation and Characterization of Carvacrol Loaded Polyhydroxybutyrate Nanoparticles by Nanoprecipitation and Dialysis Methods. Journal of Food Science 79 (2014). https://doi.org/10.1111/1750-3841.12406
[18] Aleksei Dorokhin, Sergei Lipaikin, Galina Ryltseva, Ekaterina Shishatskaya, Sergei Kachin. Preparation and Characterization of Rifampicin-Loaded poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Microparticles. Journal of Siberian Federal University. Chemistry 16(2) (2023) 159-167. https://elib.sfu-kras.ru/bitstream/handle/2311/150144/01_Dorokhin.pdf
[19] A. V. Murueva, A.M. Shershneva, E.I. Shishatskaya, T.G. Volova. The Use of Polymeric Microcarriers Loaded with Anti-Inflammatory Substances in the Therapy of Experimental Skin Wounds. Bulletin of Experimental Biology and Medicine 157 (2014) 597-602. https://doi.org/10.1007/s10517-014-2624-8
[20] S. Pramual, A. Assavanig, M. Bergkvist, C.A. Batt, P. Sunintaboon, K. Lirdprapamongkol, J. Svasti, N. Niamsiri. Development and characterization of bio-derived polyhydroxyalkanoate nanoparticles as a delivery system for hydrophobic photodynamic therapy agents. Journal of Materials Science: Materials in Medicine 27 (2016) 40. https://doi.org/10.1007/s10856-015-5655-4
[21] E. Kilicay, E. Erdal, B. Hazer, M. Türk, E.B. Denkbas. Antisense oligonucleotide delivery to cancer cell lines for the treatment of different cancer types. Artificial Cells, Nanomedicine, and Biotechnology 44 (2016) 1938-1948. https://doi.org/10.3109/21691401.2015.1115409
[22] A. Aslam, F. Masood, K. Perveen, M.R. Berger, A. Pervaiz, M. Zepp, K.D. Klika, T. Yasin, A. Hameed. Preparation, characterization and evaluation of HPβCD-PTX/PHB nanoparticles for pH-responsive, cytotoxic and apoptotic properties. International Journal of Biological Macromolecules 270 (2024) 132268. https://doi.org/10.1016/j.ijbiomac.2024.132268
[23] Q. Peng, Z.-R. Zhang, T. Gong, G.-Q. Chen, X. Sun. A rapid-acting, long-acting insulin formulation based on a phospholipid complex loaded PHBHHx nanoparticles. Biomaterials 33 (2012) 1583-1588. https://doi.org/10.1016/j.biomaterials.2011.10.072
[24] K. Chaturvedi, K. Ganguly, A.R. Kulkarni, W.E. Rudzinski, L. Krauss, M.N. Nadagouda, T.M. Aminabhavi. Oral Insulin Delivery Using Deoxycholic Acid Conjugated Pegylated Polyhydroxybutyrate Co-Polymeric Nanoparticles. Nanomedicine 10 (2015) 1569-1583. https://doi.org/10.2217/nnm.15.36
[25] I. Corrado, R. Di Girolamo, C. Regalado-González, C. Pezzella. Polyhydroxyalkanoates-Based Nanoparticles as Essential Oil Carriers. Polymers 14 (2022). https://doi.org/10.3390/polym14010166
[26] N. Sharma, P. Madan, S. Lin. Effect of process and formulation variables on the preparation of parenteral paclitaxel-loaded biodegradable polymeric nanoparticles: A co-surfactant study. Asian Journal of Pharmaceutical Sciences 11 (2016) 404-416. https://doi.org/10.1016/j.ajps.2015.09.004
[27] G. Grebnev, A. Ivanov, A.V. Kabankov, M.M. Garunov, V. Rumakin, I. Borodulina. Bioresorbable membranes based on polyvinyl alcohol and fullerene. Medical News of the North Caucasus 14 (2019). https://doi.org/10.14300/mnnc.2019.14128
[28] H. Cortés, H. Hernández-Parra, S.A. Bernal-Chávez, M.L. Del Prado-Audelo, I.H. Caballero-Florán, F. V. Borbolla-Jiménez, M. González-Torres, J.J. Magaña, G. Leyva-Gómez. Non-Ionic Surfactants for Stabilization of Polymeric Nanoparticles for Biomedical Uses. Materials 14 (2021) 3197. https://doi.org/10.3390/ma14123197
[29] F. Masood, A. Aslam, K. Perveen, M.R. Berger, (the Late) Abdul Hameed. Characterization of folic acid-grafted poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nanoparticles as carriers for sustained release of epirubicin. Journal of Molecular Structure 1304 (2024) 137631. https://doi.org/10.1016/j.molstruc.2024.137631
[30] A. Aslam, M.R. Berger, I. Ullah, A. Hameed, F. Masood. Preparation and evaluation of cytotoxic potential of paclitaxel containing poly-3-hydroxybutyrate-co-3-hydroxyvalarate (PTX/PHBV) nanoparticles. Brazilian Journal of Biology 83 (2023). https://doi.org/10.1590/1519-6984.275688
[31] S.Y. Lipaikin, I.A. Yaremenko, A.O. Terent’ev, T.G. Volova, E.I. Shishatskaya. Development of Biodegradable Delivery Systems Containing Novel 1,2,4-Trioxolane Based on Bacterial Polyhydroxyalkanoates. Advances in Polymer Technology 2022 (2022) 1-14. https://doi.org/10.1155/2022/6353909
[32] L. Simonini, H. Mahmood, A. Dorigato, A. Pegoretti. Evaluation of self-healing capability of a polycaprolactone interphase in epoxy/glass composites. Composites Part A: Applied Science and Manufacturing 169 (2023) 107539. https://doi.org/10.1016/j.compositesa.2023.107539
[33] N. Ramzan, M. Azeem, K. Mahmood, S. Shah, F.R.S. Chughtai, M. Hanif, N. Ameer, Z. Bashir, F. Siddique, M. Qaisar. Cellular and Non-cellular Antioxidant Properties of Vitamin E-Loaded Metallic-Quercetin/Polycaprolactone Nanoparticles for the Treatment of Melanogenesis. AAPS PharmSciTech 24 (2023) 141. https://doi.org/10.1208/s12249-023-02588-7
[34] A.E.-S. Abdelhamid, A. El-Sayed, S.A. Swelam, A.M. Soliman, A.M. Khalil. Encapsulated polycaprolactone with triazole derivatives and selenium nanoparticles as promising antiproliferative and anticancer agents. ADMET and DMPK (2023). https://doi.org/10.5599/admet.1789
[35] M.M. Mostafa, M.M. Amin, M.Y. Zakaria, M.A. Hussein, M.M. Shamaa, S.M. Abd El-Halim. Chitosan Surface-Modified PLGA Nanoparticles Loaded with Cranberry Powder Extract as a Potential Oral Delivery Platform for Targeting Colon Cancer Cells. Pharmaceutics 15 (2023) 606. https://doi.org/10.3390/pharmaceutics15020606
[36] N.S. Irvin-Choy, K.M. Nelson, J.P. Gleghorn, E.S. Day. Delivery and short-term maternal and fetal safety of vaginally administered PEG-PLGA nanoparticles. Drug Delivery and Translational Research 13 (2023) 3003-3013. https://doi.org/10.1007/s13346-023-01369-w
[37] D. Chaudhari, K. Kuche, V. Yadav, R. Ghadi, T. Date, N. Bhargavi, S. Jain. Exploring paclitaxel-loaded adenosine-conjugated PEGylated PLGA nanoparticles for targeting triple-negative breast cancer. Drug Delivery and Translational Research 13 (2023) 1074-1087. https://doi.org/10.1007/s13346-022-01273-9
[38] T. Miyazawa, M. Itaya, G.C. Burdeos, K. Nakagawa, T. Miyazawa. A Critical Review of the Use of Surfactant-Coated Nanoparticles in Nanomedicine and Food Nanotechnology. International Journal of Nanomedicine Volume 16 (2021) 3937-3999. https://doi.org/10.2147/IJN.S298606
[39] N.A. Petushkova, A.L. Rusanov, M.A. Pyatnitskiy, O. V Larina, V.G. Zgoda, A. V Lisitsa, N.G. Luzgina. Proteomic characterization of HaCaT keratinocytes provides new insights into changes associated with SDS exposure. Biomedical Dermatology 4 (2020) 4. https://doi.org/10.1186/s41702-019-0054-y
[40] 21 C F R 172.822. 21 CFR 172.822. Sodium lauryl sulfate. Code of Federal Regulations (1977). https://www.ecfr.gov/current/title-21/section-172.822
[41] G. Sharma, Mu. Naushad, B. Thakur, A. Kumar, P. Negi, R. Saini, A. Chahal, A. Kumar, F. Stadler, U.M.H. Aqil. Sodium Dodecyl Sulphate-Supported Nanocomposite as Drug Carrier System for Controlled Delivery of Ondansetron. International Journal of Environmental Research and Public Health 15 (2018) 414. https://doi.org/10.3390/ijerph15030414
[42] I.G. Zigoneanu, C.E. Astete, C.M. Sabliov. Nanoparticles with entrapped α-tocopherol: synthesis, characterization, and controlled release. Nanotechnology 19 (2008) 105606. https://doi.org/10.1088/0957-4484/19/10/105606
[43] Q. Xu, A. Crossley, J. Czernuszka. Preparation and characterization of negatively charged poly(lactic-co-glycolic acid) microspheres. Journal of Pharmaceutical Sciences 98 (2009) 2377-2389. https://doi.org/10.1002/jps.21612
[44] J.C. Ramirez, S.E. Flores-Villaseñor, E. Vargas-Reyes, J. Herrera-Ordonez, S. Torres-Rincón, R.D. Peralta-Rodríguez. Preparation of PDLLA and PLGA nanoparticles stabilized with PVA and a PVA-SDS mixture: Studies on particle size, degradation and drug release. Journal of Drug Delivery Science and Technology 60 (2020) 101907. https://doi.org/10.1016/j.jddst.2020.101907
[45] A. Cadete, L. Figueiredo, R. Lopes, C.C.R. Calado, A.J. Almeida, L.M.D. Gonçalves. Development and characterization of a new plasmid delivery system based on chitosan-sodium deoxycholate nanoparticles. European Journal of Pharmaceutical Sciences 45 (2012) 451-458. https://doi.org/10.1016/j.ejps.2011.09.018
[46] F. Cui. Hydrophobic ion pairing of an insulin-sodium deoxycholate complex for oral delivery of insulin. International Journal of Nanomedicine (2011) 3049. https://doi.org/10.2147/IJN.S26450
[47] J.-Y. Fang, T.-L. Hwang, I.A. Aljuffali, C.-F. Lin, C.-C. Chang. Cationic additives in nanosystems activate cytotoxicity and inflammatory response of human neutrophils: lipid nanoparticles versus polymeric nanoparticles. International Journal of Nanomedicine (2015) 371. https://doi.org/10.2147/IJN.S73017
[48] Â.S. Inácio, G.N. Costa, N.S. Domingues, M.S. Santos, A.J.M. Moreno, W.L.C. Vaz, O. V Vieira. Mitochondrial Dysfunction Is the Focus of Quaternary Ammonium Surfactant Toxicity to Mammalian Epithelial Cells. Antimicrobial Agents and Chemotherapy 57 (2013) 2631-2639. https://doi.org/10.1128/AAC.02437-12
[49] R. Gossmann, K. Langer, D. Mulac. New Perspective in the Formulation and Characterization of Didodecyldimethylammonium Bromide (DMAB) Stabilized Poly(Lactic-co-Glycolic Acid) (PLGA) Nanoparticles. PLOS ONE 10 (2015) e0127532. https://doi.org/10.1371/journal.pone.0127532
[50] A.F. Faisalina, F. Sonvico, P. Colombo, A.A. Amirul, H.A. Wahab, M.I.A. Majid. Docetaxel-Loaded Poly(3HB-co-4HB) Biodegradable Nanoparticles: Impact of Copolymer Composition. Nanomaterials 10 (2020) 2123. https://doi.org/10.3390/nano10112123
[51] A. V. Murueva, A.M. Shershneva, E.I. Shishatskaya, T.G. Volova. Characteristics of Microparticles Based on Resorbable Polyhydroxyalkanoates Loaded with Antibacterial and Cytostatic Drugs. International Journal of Molecular Sciences 24 (2023) 14983. https://doi.org/10.3390/ijms241914983
[52] P. Senthilkumar, S. S. Dawn, C. Saipriya, A. V. Samrot. Synthesis of polyhydroxybutyrate nanoparticles using surfactant (SPAN20) for hydrophobic drug delivery. Rasayan Journal of Chemistry 11 (2018) 1686-1695. https://doi.org/10.31788/RJC.2018.1144053
[53] Volova Tatyana, Shishatskaya Ekaterina. Cupriavidus eutrophus VKPM B-10646 bacteria strain - producer of polyhydroxy alkanoates and production method thereof, 2010. https://patents.google.com/patent/RU2439143C1/en
[54] T. Volova, A. Demidenko, E. Kiselev, S. Baranovskiy, E. Shishatskaya, N. Zhila. Polyhydroxyalkanoate synthesis based on glycerol and implementation of the process under conditions of pilot production. Applied Microbiology and Biotechnology 103 (2019) 225-237. https://doi.org/10.1007/s00253-018-9460-0
[55] A. Murueva, N. Zhila, A. Dudaev, E. Shishatskaya, T. Volova. Chitosan-modified ceftazidime loaded polyhydroxyalkanoates microparticles: preparation, characterization and antibacterial evaluation in vitro. ADMET and DMPK (2025) 2645. https://doi.org/10.5599/admet.2645
[56] Y.M. Jagtap, R.K. Bhujbal, A.N. Ranade, N.S. Ranpise. Effect of various polymers concentrations on physicochemical properties of floating microspheres. Indian Journal of Pharmaceutical Sciences 74 (2012) 512-20. https://doi.org/10.4103/0250-474X.110578
[57] K. Badis, H. Merine, Y. Ramli, O. Larbi, C.H. Memou. Effect of Polymers nature and Stirring Speeds on Physicochemical Properties and the Controlled Release of Allopurinol-loaded Microspheres. Journal of the Mexican Chemical Society 66 (2021). https://doi.org/10.29356/jmcs.v66i1.1583
[58] Y. Yang, Y. Ding, B. Fan, Y. Wang, Z. Mao, W. Wang, J. Wu. Inflammation-targeting polymeric nanoparticles deliver sparfloxacin and tacrolimus for combating acute lung sepsis. Journal of Controlled Release 321 (2020) 463-474. https://doi.org/10.1016/j.jconrel.2020.02.030
[59] E.F. Fernández, B. Santos-Carballal, W.-M. Weber, F.M. Goycoolea. Chitosan as a non-viral co-transfection system in a cystic fibrosis cell line. International Journal of Pharmaceutics 502 (2016) 1-9. https://doi.org/10.1016/j.ijpharm.2016.01.083
[60] M. Szczęch, K. Szczepanowicz. Polymeric Core-Shell Nanoparticles Prepared by Spontaneous Emulsification Solvent Evaporation and Functionalized by the Layer-by-Layer Method. Nanomaterials 10 (2020) 496. https://doi.org/10.3390/nano10030496
[61] S. Bhattacharjee. DLS and zeta potential - What they are and what they are not? Journal of Controlled Release 235 (2016) 337-351. https://doi.org/10.1016/j.jconrel.2016.06.017
[62] D.P. Joshi, Y.L. Lan-Chun-Fung, J.G. Pritchard. Determination of poly(vinyl alcohol) via its complex with boric acid and iodine. Analytica Chimica Acta 104 (1979) 153-160. https://doi.org/10.1016/S0003-2670(01)83825-3
[63] S.K. Sahoo, J. Panyam, S. Prabha, V. Labhasetwar. Residual polyvinyl alcohol associated with poly (d,l-lactide-co-glycolide) nanoparticles affects their physical properties and cellular uptake. Journal of Controlled Release 82 (2002) 105-114. https://doi.org/10.1016/S0168-3659(02)00127-X
[64] Z. Shakoori, R. Pashaei-Asl, M. Pashaiasl, S. Davaran, H. Ghanbari, E. Ebrahimie, S.M. Rezayat. Biocompatibility study of P (N-isopropylacrylamide)-based nanocomposite and its cytotoxic effect on HeLa cells as a drug delivery system for Cisplatin. Journal of Drug Delivery Science and Technology 71 (2022) 103254. https://doi.org/10.1016/j.jddst.2022.103254
[65] T. Deptuła, A. Warowicka, A. Woźniak, M. Grzeszkowiak, M. Jarzębski, M. Bednarowicz, A. Patkowski, R. Słomski. Cytotoxicity of thermo-responsive polymeric nanoparticles based on N-isopropylacrylamide for potential application as a bioscaffold. Acta Biochimica Polonica 62 (2015) 311-316. https://doi.org/10.18388/abp.2015_1007
[66] S. Moradhaseli, A. Zare Mirakabadi, A. Sarzaeem, M. Kamalzadeh, R. Haji Hosseini. Cytotoxicity of ICD-85 NPs on Human Cervical Carcinoma HeLa Cells through Caspase-8 Mediated Pathway. Iranian Journal of Pharmaceutical Research : IJPR 12 (2013) 155-63. https://pmc.ncbi.nlm.nih.gov/articles/PMC3813208
[67] F. Kordi, A.K. Zak, M. Darroudi, M.H. Saedabadi. Synthesis and characterizations of Ag-decorated graphene oxide nanosheets and their cytotoxicity studies. Chemical Papers 73 (2019) 1945-1952. https://doi.org/10.1007/s11696-019-00747-4
[68] J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D.J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, A. Cardona. Fiji: an open-source platform for biological-image analysis. Nature Methods 9 (2012) 676-682. https://doi.org/10.1038/nmeth.2019
[69] B. Shkodra, C. Grune, A. Traeger, A. Vollrath, S. Schubert, D. Fischer, U.S. Schubert. Effect of surfactant on the size and stability of PLGA nanoparticles encapsulating a protein kinase C inhibitor. International Journal of Pharmaceutics 566 (2019) 756-764. https://doi.org/10.1016/j.ijpharm.2019.05.072
[70] F. Boury, Tz. Ivanova, I. Panaı̈otov, J.E. Proust, A. Bois, J. Richou. Dynamic Properties of Poly(DL-lactide) and Polyvinyl Alcohol Monolayers at the Air/Water and Dichloromethane/Water Interfaces. Journal of Colloid and Interface Science 169 (1995) 380-392. https://doi.org/10.1006/jcis.1995.1047
[71] H. Murakami, Y. Kawashima, T. Niwa, T. Hino, H. Takeuchi, M. Kobayashi. Influence of the degrees of hydrolyzation and polymerization of poly(vinylalcohol) on the preparation and properties of poly(dl-lactide-co-glycolide) nanoparticle. International Journal of Pharmaceutics 149 (1997) 43-49. https://doi.org/10.1016/S0378-5173(96)04854-5
[72] M. Azizi, F. Farahmandghavi, M. Joghataei, M. Zandi, M. Imani, M. Bakhtiary, F.A. Dorkoosh, F. Ghazizadeh. Fabrication of protein-loaded PLGA nanoparticles: effect of selected formulation variables on particle size and release profile. Journal of Polymer Research 20 (2013) 110. https://doi.org/10.1007/s10965-013-0110-z
[73] C.Y. Tham, Z.A.A. Hamid, I. Hanafi, Z. Ahmad. Poly (Vinyl Alcohol) in Fabrication of PLA Micro- and Nanoparticles Using Emulsion and Solvent Evaporation Technique. Advanced Materials Research 1024 (2014) 296-299. https://doi.org/10.4028/www.scientific.net/AMR.1024.296
[74] S. Pachiyappan, D. Shanmuganatham Selvanantham, S.S. Kuppa, S. Chandrasekaran, A.V. Samrot. Surfactant‐mediated synthesis of polyhydroxybutyrate (PHB) nanoparticles for sustained drug delivery. IET Nanobiotechnology 13 (2019) 416-427. https://doi.org/10.1049/iet-nbt.2018.5053
[75] C. Prieto, L. Calvo. Performance of the Biocompatible Surfactant Tween 80, for the Formation of Microemulsions Suitable for New Pharmaceutical Processing. Journal of Applied Chemistry 2013 (2013) 1-10. https://doi.org/10.1155/2013/930356
[76] R. Davies, D.E. Graham, B. Vincent. Water-cyclohexane-“Span 80”-“Tween 80” systems: Solution properties and water/oil emulsion formation. Journal of Colloid and Interface Science 116 (1987) 88-99. https://doi.org/10.1016/0021-9797(87)90101-9
[77] O. Esim, N.K. Bakirhan, M. Sarper, A. Savaser, S.A. Ozkan, Y. Ozkan. Influence of emulsifiers on the formation and in vitro anticancer activity of epirubicin loaded PLGA nanoparticles. Journal of Drug Delivery Science and Technology 60 (2020) 102027. https://doi.org/10.1016/j.jddst.2020.102027
[78] A. Gagliardi, D. Paolino, M. Iannone, E. Palma, M. Fresta, D. Cosco. Sodium deoxycholate-decorated zein nanoparticles for a stable colloidal drug delivery system. International Journal of Nanomedicine 13 (2018) 601-614. https://doi.org/10.2147/IJN.S156930
[79] E.L. Vallorz, D. Encinas-Basurto, R.G. Schnellmann, H.M. Mansour. Design, Development, Physicochemical Characterization, and In Vitro Drug Release of Formoterol PEGylated PLGA Polymeric Nanoparticles. Pharmaceutics 14 (2022) 638. https://doi.org/10.3390/pharmaceutics14030638
[80] E. Sadri, S. Khoee, S. Moayeri, B. Haji Ali, V. Pirhajati Mahabadi, S. Shirvalilou, S. Khoei. Enhanced anti-tumor activity of transferrin/folate dual-targeting magnetic nanoparticles using chemo-thermo therapy on retinoblastoma cancer cells Y79. Scientific Reports 13 (2023) 22358. https://doi.org/10.1038/s41598-023-49171-5
[81] S. Özçelik, B. Yalçın, L. Arda, H. Santos, R. Sáez-Puche, L.A. Angurel, G.F. de la Fuente, B. Özçelik. Structure, magnetic, photocatalytic and blood compatibility studies of nickel nanoferrites prepared by laser ablation technique in distilled water. Journal of Alloys and Compounds 854 (2021) 157279. https://doi.org/10.1016/j.jallcom.2020.157279
[82] C. Chen, Y.C. Cheng, C.H. Yu, S.W. Chan, M.K. Cheung, P.H.F. Yu. In vitro cytotoxicity, hemolysis assay, and biodegradation behavior of biodegradable poly(3‐hydroxybutyrate)-poly(ethylene glycol)-poly(3‐hydroxybutyrate) nanoparticles as potential drug carriers. Journal of Biomedical Materials Research Part A 87A (2008) 290-298. https://doi.org/10.1002/jbm.a.31719
[83] T. Yue, H. Zhou, H. Sun, S. Li, X. Zhang, D. Cao, X. Yi, B. Yan. Why are nanoparticles trapped at cell junctions when the cell density is high? Nanoscale 11 (2019) 6602-6609. https://doi.org/10.1039/C9NR01024F
[84] J. Hu, M. Wang, X. Xiao, B. Zhang, Q. Xie, X. Xu, S. Li, Z. Zheng, D. Wei, X. Zhang. A novel long-acting azathioprine polyhydroxyalkanoate nanoparticle enhances treatment efficacy for systemic lupus erythematosus with reduced side effects. Nanoscale 12 (2020) 10799-10808. https://doi.org/10.1039/D0NR01308K
[85] A.M. Silva, H.L. Alvarado, G. Abrego, C. Martins-Gomes, M.L. Garduño-Ramirez, M.L. García, A.C. Calpena, E.B. Souto. In Vitro Cytotoxicity of Oleanolic/Ursolic Acids-Loaded in PLGA Nanoparticles in Different Cell Lines. Pharmaceutics 11 (2019) 362. https://doi.org/10.3390/pharmaceutics11080362
[86] S. Xiong, S. George, H. Yu, R. Damoiseaux, B. France, K.W. Ng, J.S.-C. Loo. Size influences the cytotoxicity of poly (lactic-co-glycolic acid) (PLGA) and titanium dioxide (TiO2) nanoparticles. Archives of Toxicology 87 (2013) 1075-1086. https://doi.org/10.1007/s00204-012-0938-8
Comments (0)