Intravenous Administration of an AAV9 Vector Ubiquitously Expressing C1orf194 Gene Improved CMT-Like Neuropathy in C1orf194-/- Mice

Hattori N, Yamamoto M, Yoshihara T, Koike H, Nakagawa M, Yoshikawa H, et al. Demyelinating and axonal features of Charcot–Marie–Tooth disease with mutations of myelin-related proteins (PMP22, MPZ and Cx32): a clinicopathological study of 205 Japanese patients. Brain. 2003;126:134–51.

Article  PubMed  Google Scholar 

Berciano J, García A, Gallardo E, Peeters K, Pelayo-Negro AL, Álvarez-Paradelo S, et al. Intermediate Charcot–Marie–Tooth disease: an electrophysiological reappraisal and systematic review. J Neurol. 2017;264:1655–77.

Article  CAS  PubMed  Google Scholar 

Sun S-C, Ma D, Li M-Y, Zhang R-X, Huang C, Huang H-J, et al. Mutations in C1orf194, encoding a calcium regulator, cause dominant Charcot-Marie-Tooth disease. Brain. 2019;142:2215–29.

Article  PubMed  Google Scholar 

Huang C, Shen ZR, Huang J, Sun SC, Ma D, Li MY, et al. C1orf194 deficiency leads to incomplete early embryonic lethality and dominant intermediate Charcot–Marie–Tooth disease in a knockout mouse model. Hum Mol Genet. 2020;29:2471–80.

Article  CAS  PubMed  Google Scholar 

Berciano J, García A, Combarros O. Initial semeiology in children with Charcot-Marie-Tooth disease 1A duplication: CMT-1A Initial Semeiology. Muscle Nerve. 2003;27:34–9.

Article  PubMed  Google Scholar 

Krajewski K, Lewis R, Fuerst D, Turansky C, Hinderer S, Garbern J, et al. Neurological dysfunction and axonal degeneration in Charcot-Marie-Tooth disease type 1A. J Peripher Nerv Syst. 2001;6:61–61.

Article  Google Scholar 

Bird TD. Charcot-Marie-Tooth hereditary neuropathy overview. University of Washington, Seattle, 2022. https://www.ncbi.nlm.nih.gov/books/NBK1358/. (Accessed 13 Jan 2023).

Morena J, Gupta A, Hoyle JC. Charcot-Marie-Tooth: from molecules to therapy. Int J Mol Sci. 2019;20:3419.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Padua L, Aprile I, Cavallaro T, Commodari I, La Torre G, Pareyson D, et al. Handgrip impairment in Charcot-Marie-Tooth disease. Eura Medicophys. 2006;27:417–23.

CAS  Google Scholar 

Sman AD, Hackett D, Fiatarone Singh M, Fornusek C, Menezes MP, Burns J. Systematic review of exercise for Charcot-Marie-Tooth disease. J Peripher Nerv Syst. 2015;20:347–62.

Article  PubMed  Google Scholar 

Guyton GP. Orthopaedic aspects of Charcot-Marie-Tooth disease. Foot Ankle Int. 2006;27:1003–10.

Article  PubMed  Google Scholar 

Chan G, Bowen JR, Kumar SJ. Evaluation and treatment of hip dysplasia in Charcot-Marie-Tooth disease. Orthop Clin North Am. 2006;37:203–9.

Article  PubMed  Google Scholar 

Corrado B, Ciardi G, Bargigli C. Rehabilitation management of the Charcot–Marie–Tooth syndrome. Medicine (Baltimore). 2016;95: e3278.

Article  PubMed  Google Scholar 

Kenis-Coskun O, Matthews DJ. Rehabilitation issues in Charcot-Marie-Tooth disease. J Pediatr Rehabil Med. 2016;9:31–4.

Article  PubMed  Google Scholar 

Mendell JR, Al-Zaidy S, Shell R, Arnold WD, Rodino-Klapac LR, Prior TW, et al. Single-dose gene-replacement therapy for spinal muscular atrophy. N Engl J Med. 2017;377:1713–22.

Article  CAS  PubMed  Google Scholar 

White KA, Nelvagal HR, Poole TA, Lu B, Johnson TB, Davis S, et al. Intracranial delivery of AAV9 gene therapy partially prevents retinal degeneration and visual deficits in CLN6-Batten disease mice. Mol Ther - Methods Clin Dev. 2021;20:497–507.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mendell JR, Al-Zaidy SA, Lehman KJ, McColly M, Lowes LP, Alfano LN, et al. Five-year extension results of the phase 1 START trial of onasemnogene abeparvovec in spinal muscular atrophy. JAMA Neurol. 2021;78:1–8.

Article  PubMed Central  Google Scholar 

Mendell JR, Sahenk Z, Lehman K, Nease C, Lowes LP, Miller NF, et al. Assessment of systemic delivery of rAAVrh74.MHCK7.micro-dystrophin in children with Duchenne muscular dystrophy. JAMA Neurol. 2020;77:1–10.

Wang D, Zhong L, Nahid MA, Gao G. The potential of adeno-associated viral vectors for gene delivery to muscle tissue. Expert Opin Drug Deliv. 2014;11:345–64.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bish LT, Morine K, Sleeper MM, Sanmiguel J, Wu D, Gao G, et al. Adeno-associated virus (AAV) serotype 9 provides global cardiac gene transfer superior to AAV1, AAV6, AAV7, and AAV8 in the mouse and rat. Hum Gene Ther. 2008;19:1359–68.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Su H, Yeghiazarians Y, Lee A, Huang Y, Arakawa-Hoyt J, Ye J, et al. AAV serotype 1 mediates more efficient gene transfer to pig myocardium than AAV serotype 2 and plasmid. J Gene Med. 2008;10:33–41.

Article  CAS  PubMed  Google Scholar 

Stavrou M, Kagiava A, Sargiannidou I, Georgiou E, Kleopa KA. Charcot–Marie–Tooth neuropathies: current gene therapy advances and the route toward translation. J Peripher Nerv Syst. 2023;28:150–68.

Article  CAS  PubMed  Google Scholar 

Al-Zaidy SA, Kolb SJ, Lowes L, Alfano LN, Shell R, Church KR, et al. AVXS-101 (onasemnogene abeparvovec) for SMA1: comparative study with a prospective natural history cohort. J Neuromuscul Dis. 2019;6:307–17.

Article  PubMed  Google Scholar 

Gautier B, Hajjar H, Soares S, Berthelot J, Deck M, Abbou S, et al. AAV2/9-mediated silencing of PMP22 prevents the development of pathological features in a rat model of Charcot-Marie-Tooth disease 1 A. Nat Commun. 2021;12:2356.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee J-S, Lee JY, Song DW, Bae HS, Doo HM, Yu HS, et al. Targeted PMP22 TATA-box editing by CRISPR/Cas9 reduces demyelinating neuropathy of Charcot-Marie-Tooth disease type 1A in mice. Nucleic Acids Res. 2020;48:130–40.

CAS  PubMed  Google Scholar 

Boutary S, Caillaud M, El Madani M, Vallat J-M, Loisel-Duwattez J, Rouyer A, et al. Squalenoyl siRNA PMP22 nanoparticles are effective in treating mouse models of Charcot-Marie-Tooth disease type 1 A. Commun Biol. 2021;4:1–14.

Article  Google Scholar 

Sargiannidou I, Kagiava A, Bashiardes S, Richter J, Christodoulou C, Scherer SS, et al. Intraneural GJB1 gene delivery improves nerve pathology in a model of X-linked Charcot–Marie–Tooth disease. Ann Neurol. 2015;78:303–16.

Article  CAS  PubMed  Google Scholar 

Pleticha J, Maus TP, Christner JA, Marsh MP, Lee KH, Hooten WM, et al. Minimally invasive convection-enhanced delivery of biologics into dorsal root ganglia: validation in the pig model and prospective modeling in humans: Technical note. J Neurosurg. 2014;121:851–8.

Article  PubMed  PubMed Central  Google Scholar 

Ozes B, Moss K, Myers M, Ridgley A, Chen L, Murrey D, et al. AAV1.NT-3 gene therapy in a CMT2D model: phenotypic improvements in GarsP278KY/+ mice. Brain Commun. 2021;3:fcab252.

Sahenk Z, Galloway G, Clark KR, Malik V, Rodino-Klapac LR, Kaspar BK, et al. AAV1.NT-3 gene therapy for Charcot–Marie–Tooth neuropathy. Mol Ther. 2014;22:511–521.

Burst mitofusin activation reverses neuromuscular dysfunction in murine CMT2A - PMC. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7655101/. (Accessed 22 Jul 2023).

Rocha AG, Franco A, Krezel AM, Rumsey JM, Alberti JM, Knight WC, et al. Mfn2 agonists reverse mitochondrial defects in preclinical models of Charcot Marie Tooth disease type 2A. Science. 2018;360:336–41.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Thomas FP, Brannagan TH, Butterfield RJ, Desai U, Habib AA, Herrmann DN, et al. Randomized phase 2 study of ACE-083 in patients with Charcot-Marie-Tooth disease. Neurology. 2022;98:e2356–67.

Article  CAS  PubMed  PubMed Central  Google Scholar 

A translatable RNAi-driven gene therapy silences PMP22/Pmp22 genes and improves neuropathy in CMT1A mice - PMC. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9246392/. (Accessed 22 Jul 2023).

Kagiava A, Karaiskos C, Richter J, Tryfonos C, Jennings MJ, Heslegrave AJ, et al. AAV9-mediated Schwann cell-targeted gene therapy rescues a model of demyelinating neuropathy. Gene Ther. 2021;28:659–75.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Allele-specific RNA interference prevents neuropathy in Charcot-Marie-Tooth disease type 2D mouse models - PMC. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6877339/. (Accessed 22 Jul 2023).

Development of Intrathecal AAV9 Gene Therapy for Giant Axonal Neuropathy - PMC. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5948230/. (Accessed 22 Jul 2023).

Kagiava A, Richter J, Tryfonos C, Karaiskos C, Heslegrave AJ, Sargiannidou I, et al. Gene replacement therapy after neuropathy onset provides therapeutic benefit in a model of CMT1X. Hum Mol Genet. 2019;28:3528–42.

Article  CAS  PubMed  Google Scholar 

Schiza N, Georgiou E, Kagiava A, Médard J-J, Richter J, Tryfonos C, et al. Gene replacement therapy in a model of Charcot-Marie-Tooth 4C neuropathy. Brain. 2019;142:1227–41.

Article  PubMed  PubMed Central  Google Scholar 

Yalvac ME, Amornvit J, Chen L, Shontz KM, Lewis S, Sahenk Z. AAV1.NT-3 gene therapy increases muscle fiber diameter through activation of mTOR pathway and metabolic remodeling in a CMT mouse model. Gene Ther. 2018;25:129–138.

Messing A, Behringer R, Hammang JP, Palmiter RD, Brinster RL, Lemke G. P0 promoter directs expression of reporter and toxin genes to Schwann cells of transgenic mice. Neuron. 1992;8:507–20.

Article  CAS  PubMed  Google Scholar 

Scherer SS, Xu Y-T, Messing A, Willecke K, Fischbeck KH, Jeng LJB. Transgenic expression of human connexin32 in myelinating Schwann cells prevents demyelination in connexin32-null mice. J Neurosci. 2005;25:1550–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kagiava A, Sargiannidou I, Theophilidis G, Karaiskos C, Richter J, Bashiardes S, et al. Intrathecal gene therapy rescues a model of demyelinating peripheral neuropathy. Proc Natl Acad Sci. 2016;113:E2421–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif