Kotas ME, Medzhitov R. Homeostasis, inflammation, and disease susceptibility[J]. Cell. 2015;160(5):816–27.
Article CAS PubMed PubMed Central Google Scholar
Netea MG, Balkwill F, Chonchol M, et al. Author correction: a guiding map for inflammation[J]. Nat Immunol. 2021;22(2):254.
Article CAS PubMed Google Scholar
Lord KA, Hoffman-Liebermann B, Liebermann DA. Nucleotide sequence and expression of a cDNA encoding MyD88, a novel myeloid differentiation primary response gene induced by IL6[J]. Oncogene. 1990;5(7):1095–7.
Hardiman G, Rock FL, Balasubramanian S, et al. Molecular characterization and modular analysis of human MyD88[J]. Oncogene. 1996;13(11):2467–75.
Akira S, Takeda K. Toll-like receptor signalling[J]. Nat Rev Immunol. 2004;4(7):499–511.
Article CAS PubMed Google Scholar
Baud V, Liu ZG, Bennett B, et al. Signaling by proinflammatory cytokines: oligomerization of TRAF2 and TRAF6 is sufficient for JNK and IKK activation and target gene induction via an amino-terminal effector domain[J]. Genes Dev. 1999;13(10):1297–308.
Article CAS PubMed PubMed Central Google Scholar
Lin SC, Lo YC, Wu H. Helical assembly in the MyD88-IRAK4-IRAK2 complex in TLR/IL-1R signalling[J]. Nature. 2010;465(7300):885–90.
Article CAS PubMed PubMed Central Google Scholar
Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors[J]. Nat Immunol. 2010;11(5):373–84.
Article CAS PubMed Google Scholar
Liu M, Hu Z, Wang C, et al. The TLR/MyD88 signalling cascade in inflammation and gastric cancer: the immune regulatory network of Helicobacter pylori[J]. J Mol Med (Berl). 2023;101:767–81.
Article CAS PubMed Google Scholar
Kim YC, Lee SE, Kim SK, et al. Toll-like receptor mediated inflammation requires FASN-dependent MYD88 palmitoylation[J]. Nat Chem Biol. 2019;15(9):907–16.
Article CAS PubMed Google Scholar
Yuan Q, Zhang J, Liu Y, et al. MyD88 in myofibroblasts regulates aerobic glycolysis-driven hepatocarcinogenesis via ERK-dependent PKM2 nuclear relocalization and activation[J]. J Pathol. 2022;256(4):414–26.
Article CAS PubMed Google Scholar
Zhang J, Liu Y, Chen H, et al. MyD88 in hepatic stellate cells enhances liver fibrosis via promoting macrophage M1 polarization[J]. Cell Death Dis. 2022;13(4):411.
Article PubMed PubMed Central Google Scholar
Bayer AL, Alcaide P. MyD88: at the heart of inflammatory signaling and cardiovascular disease[J]. J Mol Cell Cardiol. 2021;161:75–85.
Article CAS PubMed PubMed Central Google Scholar
Owen AM, Luan L, Burelbach KR, et al. MyD88-dependent signaling drives toll-like receptor-induced trained immunity in macrophages[J]. Front Immunol. 2022;13:1044662.
Article CAS PubMed PubMed Central Google Scholar
Dolcino M, Tinazzi E, Puccetti A, et al. In systemic sclerosis, a unique long non coding RNA regulates genes and pathways involved in the three main features of the disease (Vasculopathy, Fibrosis and Autoimmunity) and in carcinogenesis[J]. J Clin Med. 2019;8(3):320.
Article CAS PubMed PubMed Central Google Scholar
Brown GJ, Canete PF, Wang H, et al. TLR7 gain-of-function genetic variation causes human lupus[J]. Nature. 2022;605(7909):349–56.
Article CAS PubMed PubMed Central Google Scholar
Yuan Q, Gu J, Zhang J, et al. MyD88 in myofibroblasts enhances colitis-associated tumorigenesis via promoting macrophage M2 polarization[J]. Cell Rep. 2021;34(5): 108724.
Article CAS PubMed Google Scholar
Zhu G, Cheng Z, Huang Y, et al. MyD88 mediates colorectal cancer cell proliferation, migration and invasion via NF-kappaB/AP-1 signaling pathway[J]. Int J Mol Med. 2020;45(1):131–40.
Ngo VN, Young RM, Schmitz R, et al. Oncogenically active MYD88 mutations in human lymphoma[J]. Nature. 2011;470(7332):115–9.
Article CAS PubMed Google Scholar
Saikh KU. MyD88 and beyond: a perspective on MyD88-targeted therapeutic approach for modulation of host immunity[J]. Immunol Res. 2021;69(2):117–28.
Article CAS PubMed PubMed Central Google Scholar
Zhang Q, Lenardo MJ, Baltimore D. 30 years of NF-kappaB: a blossoming of relevance to human pathobiology[J]. Cell. 2017;168(1–2):37–57.
Article CAS PubMed PubMed Central Google Scholar
Loiarro M, Capolunghi F, Fanto N, et al. Pivotal advance: inhibition of MyD88 dimerization and recruitment of IRAK1 and IRAK4 by a novel peptidomimetic compound[J]. J Leukoc Biol. 2007;82(4):801–10.
Article CAS PubMed Google Scholar
Loiarro M, Sette C, Gallo G, et al. Peptide-mediated interference of TIR domain dimerization in MyD88 inhibits interleukin-1-dependent activation of NF-kappaB[J]. J Biol Chem. 2005;280(16):15809–14.
Article CAS PubMed Google Scholar
Bartfai T, Behrens MM, Gaidarova S, et al. A low molecular weight mimic of the Toll/IL-1 receptor/resistance domain inhibits IL-1 receptor-mediated responses[J]. Proc Natl Acad Sci U S A. 2003;100(13):7971–6.
Article CAS PubMed PubMed Central Google Scholar
Davis CN, Mann E, Behrens MM, et al. MyD88-dependent and -independent signaling by IL-1 in neurons probed by bifunctional Toll/IL-1 receptor domain/BB-loop mimetics[J]. Proc Natl Acad Sci U S A. 2006;103(8):2953–8.
Article CAS PubMed PubMed Central Google Scholar
Treon SP, Xu L, Yang G, et al. MYD88 L265P somatic mutation in Waldenstrom’s macroglobulinemia[J]. N Engl J Med. 2012;367(9):826–33.
Article CAS PubMed Google Scholar
Olson MA, Lee MS, Kissner TL, et al. Discovery of small molecule inhibitors of MyD88-dependent signaling pathways using a computational screen[J]. Sci Rep. 2015;5:14246.
Article PubMed PubMed Central Google Scholar
Zou Z, Du D, Miao Y, et al. TJ-M2010-5, a novel MyD88 inhibitor, corrects R848-induced lupus-like immune disorders of B cells in vitro[J]. Int Immunopharmacol. 2020;85: 106648.
Article CAS PubMed Google Scholar
Li C, Zhang LM, Zhang X, et al. Short-term pharmacological Inhibition of MyD88 homodimerization by a novel inhibitor promotes robust allograft tolerance in mouse cardiac and skin transplantation[J]. Transplantation. 2017;101(2):284–93.
Article CAS PubMed Google Scholar
Zheng XY, Sun CC, Liu Q, et al. Compound LM9, a novel MyD88 inhibitor, efficiently mitigates inflammatory responses and fibrosis in obesity-induced cardiomyopathy[J]. Acta Pharmacol Sin. 2020;41(8):1093–101.
Article CAS PubMed PubMed Central Google Scholar
Song J, Chen D, Pan Y, et al. Discovery of a novel MyD88 inhibitor M20 and its protection against sepsis-mediated acute lung injury[J]. Front Pharmacol. 2021;12: 775117.
Article CAS PubMed PubMed Central Google Scholar
Liu X, Hunter ZR, Xu L, et al. Targeting myddosome assembly in Waldenstrom Macroglobulinaemia[J]. Br J Haematol. 2017;177(5):808–13.
Loiarro M, Volpe E, Ruggiero V, et al. Mutational analysis identifies residues crucial for homodimerization of myeloid differentiation factor 88 (MyD88) and for its function in immune cells[J]. J Biol Chem. 2013;288(42):30210–22.
Article CAS PubMed PubMed Central Google Scholar
Hu BC, Wu GH, Shao ZQ, et al. Redox DAPK1 destabilizes Pellino1 to govern inflammation-coupling tubular damage during septic AKI[J]. Theranostics. 2020;10(25):11479–96.
Article CAS PubMed PubMed Central Google Scholar
Lu Y, Zhang XS, Zhang ZH, et al. Peroxiredoxin 2 activates microglia by interacting with Toll-like receptor 4 after subarachnoid hemorrhage[J]. J Neuroinflammation. 2018;15(1):87.
Article PubMed PubMed Central Google Scholar
Wang X, Tan Y, Huang Z, et al. Disrupting myddosome assembly in diffuse large B-cell lymphoma cells using the MYD88 dimerization inhibitor ST2825[J]. Oncol Rep. 2019;42(5):1755–66.
Comments (0)