Alano CC, Garnier P, Ying W, Higashi Y, Kauppinen TM, Swanson RA (2010) NAD+ depletion is necessary and sufficient for poly(ADP-ribose) polymerase-1-mediated neuronal death. J Neurosci 30(8):2967–2978. https://doi.org/10.1523/JNEUROSCI.5552-09.2010
Article CAS PubMed PubMed Central Google Scholar
Asano K (2021) Origin of translational control by eIF2alpha phosphorylation: insights from genome-wide translational profiling studies in fission yeast. Curr Genet 67(3):359–368. https://doi.org/10.1007/s00294-020-01149-w
Article CAS PubMed PubMed Central Google Scholar
Balogh E, Toth A, Mehes G, Trencsenyi G, Paragh G, Jeney V (2019) Hypoxia triggers osteochondrogenic differentiation of vascular smooth muscle cells in an hif-1 (hypoxia-inducible factor 1)-dependent and reactive oxygen species-dependent manner. Arterioscler Thromb Vasc Biol 39(6):1088–1099. https://doi.org/10.1161/ATVBAHA.119.312509
Article CAS PubMed Google Scholar
Barile L, Vassalli G (2017) Exosomes: therapy delivery tools and biomarkers of diseases. Pharmacol Ther 174:63–78. https://doi.org/10.1016/j.pharmthera.2017.02.020
Article CAS PubMed Google Scholar
Barile L, Moccetti T, Marban E, Vassalli G (2017) Roles of exosomes in cardioprotection. Eur Heart J 38(18):1372–1379. https://doi.org/10.1093/eurheartj/ehw304
Article CAS PubMed Google Scholar
Beckmann E, Grau JB, Sainger R, Poggio P, Ferrari G (2010) Insights into the use of biomarkers in calcific aortic valve disease. J Heart Valve Dis 19(4):441–452
PubMed PubMed Central Google Scholar
Blaser MC, Aikawa E (2018) Roles and regulation of extracellular vesicles in cardiovascular mineral metabolism. Front Cardiovasc Med 5:187. https://doi.org/10.3389/fcvm.2018.00187
Article CAS PubMed PubMed Central Google Scholar
Cho KI, Sakuma I, Sohn IS, Jo SH, Koh KK (2018) Inflammatory and metabolic mechanisms underlying the calcific aortic valve disease. Atherosclerosis 277:60–65. https://doi.org/10.1016/j.atherosclerosis.2018.08.029
Article CAS PubMed Google Scholar
Dickhout JG, Carlisle RE, Jerome DE et al (2012) Integrated stress response modulates cellular redox state via induction of cystathionine gamma-lyase: cross-talk between integrated stress response and thiol metabolism. J Biol Chem 287(10):7603–7614. https://doi.org/10.1074/jbc.M111.304576
Article CAS PubMed PubMed Central Google Scholar
Fu Z, Li F, Jia L et al (2019) Histone deacetylase 6 reduction promotes aortic valve calcification via an endoplasmic reticulum stress-mediated osteogenic pathway. J Thorac Cardiovasc Surg 158(2):408–417. https://doi.org/10.1016/j.jtcvs.2018.10.136
Article CAS PubMed Google Scholar
Geng J, Xu H, Fu W et al (2020) Rosuvastatin protects against endothelial cell apoptosis in vitro and alleviates atherosclerosis in ApoE(-/-) mice by suppressing endoplasmic reticulum stress. Exp Ther Med 20(1):550–560. https://doi.org/10.3892/etm.2020.8733
Article CAS PubMed PubMed Central Google Scholar
Geng Z, Xu F, Zhang Y (2016) MiR-129-5p-mediated Beclin-1 suppression inhibits endothelial cell autophagy in atherosclerosis. Am J Transl Res 8(4):1886–1894
CAS PubMed PubMed Central Google Scholar
Goody PR, Hosen MR, Christmann D et al (2020) Aortic valve stenosis: from basic mechanisms to novel therapeutic targets. Arterioscler Thromb Vasc Biol 40(4):885–900. https://doi.org/10.1161/ATVBAHA.119.313067
Article CAS PubMed Google Scholar
Heo J, Yang HC, Rhee WJ, Kang H (2020) Vascular smooth muscle cell-derived exosomal micrornas regulate endothelial cell migration under pdgf stimulation. Cells 9(3):33. https://doi.org/10.3390/cells9030639
Huang P, Peslak SA, Lan X et al (2020) The HRI-regulated transcription factor ATF4 activates BCL11A transcription to silence fetal hemoglobin expression. Blood 135(24):2121–2132. https://doi.org/10.1182/blood.2020005301
Article PubMed PubMed Central Google Scholar
Hutcheson JD, Aikawa E, Merryman WD (2014) Potential drug targets for calcific aortic valve disease. Nat Rev Cardiol 11(4):218–231. https://doi.org/10.1038/nrcardio.2014.1
Article CAS PubMed PubMed Central Google Scholar
Jung YY, Kim KC, Park MH et al (2018) Atherosclerosis is exacerbated by chitinase-3-like-1 in amyloid precursor protein transgenic mice. Theranostics 8(3):749–766. https://doi.org/10.7150/thno.20183
Article CAS PubMed PubMed Central Google Scholar
Kapustin AN, Shanahan CM (2016) Emerging roles for vascular smooth muscle cell exosomes in calcification and coagulation. J Physiol 594(11):2905–2914. https://doi.org/10.1113/JP271340
Article CAS PubMed PubMed Central Google Scholar
Kyotani Y, Takasawa S, Yoshizumi M (2019) Proliferative pathways of vascular smooth muscle cells in response to intermittent hypoxia. Int J Mol Sci 20(11):2706. https://doi.org/10.3390/ijms20112706
Article CAS PubMed PubMed Central Google Scholar
Latif N, Sarathchandra P, Chester AH, Yacoub MH (2015) Expression of smooth muscle cell markers and co-activators in calcified aortic valves. Eur Heart J 36(21):1335–1345. https://doi.org/10.1093/eurheartj/eht547
Article CAS PubMed Google Scholar
Li J, Xue H, Li T et al (2019) Exosomes derived from mesenchymal stem cells attenuate the progression of atherosclerosis in ApoE(-/-) mice via miR-let7 mediated infiltration and polarization of M2 macrophage. Biochem Biophys Res Commun 510(4):565–572. https://doi.org/10.1016/j.bbrc.2019.02.005
Article CAS PubMed Google Scholar
Li N, Bai Y, Zhou G et al (2020) miR-214 attenuates aortic valve calcification by regulating osteogenic differentiation of valvular interstitial cells. Mol Ther Nucleic Acids 22:971–980. https://doi.org/10.1016/j.omtn.2020.10.016
Article CAS PubMed PubMed Central Google Scholar
Masuda M, Miyazaki-Anzai S, Levi M, Ting TC, Miyazaki M (2013) PERK-eIF2alpha-ATF4-CHOP signaling contributes to TNFalpha-induced vascular calcification. J Am Heart Assoc 2(5):e000238. https://doi.org/10.1161/JAHA.113.000238
Article CAS PubMed PubMed Central Google Scholar
Majumdar U, Manivannan S, Basu M et al (2021) Nitric oxide prevents aortic valve calcification by S-nitrosylation of USP9X to activate NOTCH signaling. Sci Adv 7(6):304. https://doi.org/10.1126/sciadv.abe3706
Masuda M, Ting TC, Levi M, Saunders SJ, Miyazaki-Anzai S, Miyazaki M (2012) Activating transcription factor 4 regulates stearate-induced vascular calcification. J Lipid Res 53(8):1543–1552. https://doi.org/10.1194/jlr.M025981
Article CAS PubMed PubMed Central Google Scholar
Navarrete-Opazo A, Mitchell GS (2014) Therapeutic potential of intermittent hypoxia: a matter of dose. Am J Physiol Regul Integr Comp Physiol 307(10):R1181-1197. https://doi.org/10.1152/ajpregu.00208.2014
Article CAS PubMed PubMed Central Google Scholar
Onat UI, Yildirim AD, Tufanli O et al (2019) Intercepting the lipid-induced integrated stress response reduces atherosclerosis. J Am Coll Cardiol 73(10):1149–1169. https://doi.org/10.1016/j.jacc.2018.12.055
Article CAS PubMed PubMed Central Google Scholar
Pan W, Liang J, Tang H et al (2020) Differentially expressed microRNA profiles in exosomes from vascular smooth muscle cells associated with coronary artery calcification. Int J Biochem Cell Biol 118:105645. https://doi.org/10.1016/j.biocel.2019.105645
Article CAS PubMed Google Scholar
Peeters F, Meex SJR, Dweck MR et al (2018) Calcific aortic valve stenosis: hard disease in the heart: a biomolecular approach towards diagnosis and treatment. Eur Heart J 39(28):2618–2624. https://doi.org/10.1093/eurheartj/ehx653
Article CAS PubMed Google Scholar
Peltonen T, Ohukainen P, Ruskoaho H, Rysa J (2017) Targeting vasoactive peptides for managing calcific aortic valve disease. Ann Med 49(1):63–74. https://doi.org/10.1080/07853890.2016.1231933
Article CAS PubMed Google Scholar
Qiu H, Shi S, Wang S, Peng H, Ding SJ, Wang L (2018) Proteomic profiling exosomes from vascular smooth muscle cell. Proteomics Clin Appl 12(5):e1700097. https://doi.org/10.1002/prca.201700097
Article CAS PubMed PubMed Central Google Scholar
Raddatz MA, Madhur MS, Merryman WD (2019) Adaptive immune cells in calcific aortic valve disease. Am J Physiol Heart Circ Physiol 317(1):H141–H155. https://doi.org/10.1152/ajpheart.00100.2019
Comments (0)