Mitchell JD, Borasio GD. Amyotrophic lateral sclerosis. Lancet. 2007;369(9578):2031–41. https://doi.org/10.1016/S0140-6736(07)60944-1.
Article CAS PubMed Google Scholar
Scott A. Drug therapy: on the treatment trail for ALS. Nature. 2017;550(7676):S120–1. https://doi.org/10.1038/550S120a.
Article CAS PubMed Google Scholar
Kumar V, Islam A, Hassan MI, et al. Therapeutic progress in amyotrophic lateral sclerosis-beginning to learning. Eur J Med Chem. 2016;121:903–17. https://doi.org/10.1016/j.ejmech.2016.06.017.
Article CAS PubMed Google Scholar
Gordon P, Corcia P, Meininger V. New therapy options for amyotrophic lateral sclerosis. Expert Opin Pharmacother. 2013;14(14):1907–17. https://doi.org/10.1517/14656566.2013.819344.
Article CAS PubMed Google Scholar
Wright AL, Della Gatta PA, Le S, et al. Riluzole does not ameliorate disease caused by cytoplasmic TDP-43 in a mouse model of amyotrophic lateral sclerosis. Eur J Neurosci. 2021;54(6):6237–55. https://doi.org/10.1111/ejn.15422.
Article CAS PubMed Google Scholar
Witzel S, Maier A, Steinbach R, et al. Safety and effectiveness of long-term intravenous administration of edaravone for treatment of patients with amyotrophic lateral sclerosis. JAMA Neurol. 2022;79(2):121–30. https://doi.org/10.1001/jamaneurol.2021.4893.
Blackburn D, Sargsyan S, Monk PN, et al. Astrocyte function and role in motor neuron disease: a future therapeutic target? Glia. 2009;57(12):1251–64. https://doi.org/10.1002/glia.20848.
Henriques A, Pitzer C, Schneider A. Neurotrophic growth factors for the treatment of amyotrophic lateral sclerosis: where do we stand? Front Neurosci. 2010;4:32. https://doi.org/10.3389/fnins.2010.00032.
Article PubMed PubMed Central Google Scholar
Liu J, Wang F. Role of neuroinflammation in amyotrophic lateral sclerosis: Cellular mechanisms and therapeutic implications. Front Immunol. 2017;8:1005. https://doi.org/10.3389/fimmu.2017.01005.
Article CAS PubMed PubMed Central Google Scholar
Tortelli R, Zecca C, Piccininni M, et al. Plasma inflammatory cytokines are elevated in ALS. Front Neurol. 2020;11:552295. https://doi.org/10.3389/fneur.2020.552295.
Article PubMed PubMed Central Google Scholar
Hu Y, Cao C, Qin XY, et al. Increased peripheral blood inflammatory cytokine levels in amyotrophic lateral sclerosis: a meta-analysis study. Sci Rep. 2017;7:9094. https://doi.org/10.1038/s41598-017-09097-1.
Article CAS PubMed PubMed Central Google Scholar
Fischer LR, Culver DG, Tennant P, et al. Amyotrophic lateral sclerosis is a distal axonopathy: evidence in mice and man. Exp Neurol. 2004;185(2):232–40. https://doi.org/10.1016/j.expneurol.2003.10.004.
Cappello V, Francolini M. Neuromuscular junction dismantling in amyotrophic lateral sclerosis. Int J Mol Sci. 2017. https://doi.org/10.3390/ijms18102092.
Article PubMed PubMed Central Google Scholar
Collard JF, Cote F, Julien JP. Defective axonal transport in a transgenic mouse model of amyotrophic lateral sclerosis. Nature. 1995;375(6526):61–4. https://doi.org/10.1038/375061a0.
Article CAS PubMed Google Scholar
Strom AL, Gal J, Shi P, et al. Retrograde axonal transport and motor neuron disease. J Neurochem. 2008;106(2):495–505. https://doi.org/10.1111/j.1471-4159.2008.05393.x.
Article CAS PubMed PubMed Central Google Scholar
Dupuis L, Gonzalez de Aguilar JL, Oudart H, et al. Mitochondria in amyotrophic lateral sclerosis: a trigger and a target. Neurodegener Dis. 2004;1(6):245–54. https://doi.org/10.1159/000085063.
Bacman SR, Bradley WG, Moraes CT. Mitochondrial involvement in amyotrophic lateral sclerosis: trigger or target? Mol Neurobiol. 2006;33(2):113–31. https://doi.org/10.1385/MN:33:2:113.
Article CAS PubMed Google Scholar
Martin LJ. Mitochondriopathy in Parkinson disease and amyotrophic lateral sclerosis. J Neuropathol Exp Neurol. 2006;65(12):1103–10. https://doi.org/10.1097/01.jnen.0000248541.05552.c4.
Article CAS PubMed Google Scholar
Kinoshita Y, Ito H, Hirano A, et al. Nuclear contour irregularity and abnormal transporter protein distribution in anterior horn cells in amyotrophic lateral sclerosis. J Neuropathol Exp Neurol. 2009;68(11):1184–92. https://doi.org/10.1097/NEN.0b013e3181bc3bec.
Article CAS PubMed Google Scholar
Shaw PJ, Ince PG. Glutamate, excitotoxicity and amyotrophic lateral sclerosis. J Neurol. 1997;244(Suppl 2):S3-14. https://doi.org/10.1007/BF03160574.
Corona JC, et al. Glutamate excitotoxicity and therapeutic targets for amyotrophic lateral sclerosis. Expert Opin Ther Targets. 2007;11(11):1415–28. https://doi.org/10.1517/14728222.11.11.1415.
Article CAS PubMed Google Scholar
Carter BJ, Anklesaria P, Choi S, et al. Redox modifier genes and pathways in amyotrophic lateral sclerosis. Antioxid Redox Signal. 2009;11(7):1569–86. https://doi.org/10.1089/ars.2008.2414.
Article CAS PubMed PubMed Central Google Scholar
Edgar R, Domrachev M, Lash AE. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002;30(1):207–10. https://doi.org/10.1093/nar/30.1.207.
Article CAS PubMed PubMed Central Google Scholar
Dafinca R, Scaber J, Ababneh N, et al. C9orf72 hexanucleotide expansions are associated with altered endoplasmic reticulum calcium homeostasis and stress granule formation in induced pluripotent stem cell-derived neurons from patients with amyotrophic lateral sclerosis and frontotemporal dementia. Stem Cells. 2016;34(8):2063–78. https://doi.org/10.1002/stem.2388.
Article CAS PubMed Google Scholar
Fujimori K, Ishikawa M, Otomo A, et al. Modeling sporadic ALS in iPSC-derived motor neurons identifies a potential therapeutic agent. Nat Med. 2018;24(10):1579–89. https://doi.org/10.1038/s41591-018-0140-5.
Article CAS PubMed Google Scholar
Rabin SJ, Kim JM, Baughn M, et al. Sporadic ALS has compartment-specific aberrant exon splicing and altered cell-matrix adhesion biology. Hum Mol Genet. 2010;19(2):313–28. https://doi.org/10.1093/hmg/ddp498.
Article CAS PubMed Google Scholar
Kirby J, Ning K, Ferraiuolo L, et al. Phosphatase and tensin homologue/protein kinase B pathway linked to motor neuron survival in human superoxide dismutase 1-related amyotrophic lateral sclerosis. Brain. 2011;134(Pt 2):506–17. https://doi.org/10.1093/brain/awq345.
Article PubMed PubMed Central Google Scholar
Highley JR, Kirby J, Jansweijer JA, et al. Loss of nuclear TDP-43 in amyotrophic lateral sclerosis (ALS) causes altered expression of splicing machinery and widespread dysregulation of RNA splicing in motor neurones. Neuropathol Appl Neurobiol. 2014;40(6):670–85. https://doi.org/10.1111/nan.12148.
Article CAS PubMed Google Scholar
Cooper-Knock J, Bury JJ, Heath PR, et al. C9ORF72 GGGGCC expanded repeats produce splicing dysregulation which correlates with disease severity in amyotrophic lateral sclerosis. PLoS ONE. 2015;10(5):e0127376. https://doi.org/10.1371/journal.pone.0127376.
Article CAS PubMed PubMed Central Google Scholar
Sareen D, O’Rourke JG, Meera P, et al. Targeting RNA foci in iPSC-derived motor neurons from ALS patients with a C9ORF72 repeat expansion. Sci Transl Med. 2013;5(208):208ra149. https://doi.org/10.1126/scitranslmed.3007529.
Article CAS PubMed PubMed Central Google Scholar
Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008;9:559. https://doi.org/10.1186/1752-0509-1-54.
Article CAS PubMed PubMed Central Google Scholar
Subramanian A, Narayan R, Corsello SM, et al. A next generation connectivity map: L1000 platform and the first 1,000,000 profiles. Cell. 2017;171(6):1437–52.e17. https://doi.org/10.1016/j.cell.2017.10.049.
Article CAS PubMed PubMed Central Google Scholar
Lamb J, Crawford ED, Peck D, et al. The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science. 2006;313(5795):1929–35. https://doi.org/10.1126/science.1132939.
Comments (0)