Histological Correlates of Auditory Nerve Injury from Kainic Acid in the Budgerigar (Melopsittacus undulatus)

Makary CA, Shin J, Kujawa SG, Liberman MC, Merchant SN (2011) Age-related primary cochlear neuronal degeneration in human temporal bones. J Assoc Res Otolaryngol 12(6):711–717. https://doi.org/10.1007/s10162-011-0283-2

Article  PubMed  PubMed Central  Google Scholar 

Viana LM, O’Malley JT, Burgess BJ, Jones DD, Oliveira CA, Santos F, Merchant SN, Liberman LD, Liberman MC (2015) Cochlear neuropathy in human presbycusis: confocal analysis of hidden hearing loss in post-mortem tissue. Hear Res 327:78–88. https://doi.org/10.1016/j.heares.2015.04.014

Article  PubMed  PubMed Central  Google Scholar 

Wu PZ, Liberman LD, Bennett K, de Gruttola V, O’Malley JT, Liberman MC (2019) Primary neural degeneration in the human cochlea: evidence for hidden hearing loss in the aging ear. Neuroscience 407:8–20. https://doi.org/10.1016/j.neuroscience.2018.07.053

Article  CAS  PubMed  Google Scholar 

Liberman MC, Epstein MJ, Cleveland SS, Wang H, Maison SF (2016) Toward a differential diagnosis of hidden hearing loss in humans. PLoS ONE 11(9):e0162726. https://doi.org/10.1371/journal.pone.0162726

Article  CAS  PubMed  PubMed Central  Google Scholar 

Grant KJ, Mepani AM, Wu PZ, Hancock KE, de Gruttola V, Liberman MC, Maison SF (2020) Electrophysiological markers of cochlear function correlate with hearing-in-noise performance among audiometrically normal subjects. J Neurophysiol 124(2):418–431. https://doi.org/10.1152/jn.00016.2020

Article  PubMed  PubMed Central  Google Scholar 

Grose JH, Buss E, Hall JW 3rd (2017) Loud music exposure and cochlear synaptopathy in young adults: isolated auditory brainstem response effects but no perceptual consequences. Trends Hear 21:2331216517737417. https://doi.org/10.1177/2331216517737417

Article  PubMed  PubMed Central  Google Scholar 

Prendergast G, Millman RE, Guest H, Munro KJ, Kluk K, Dewey RS, Hall DA, Heinz MG, Plack CJ (2017) Effects of noise exposure on young adults with normal audiograms II: behavioral measures. Hear Res 356:74–86. https://doi.org/10.1016/j.heares.2017.10.007

Article  PubMed  PubMed Central  Google Scholar 

Guest H, Munro KJ, Prendergast G, Plack CJ (2019) Reliability and interrelations of seven proxy measures of cochlear synaptopathy. Hear Res 375:34–43. https://doi.org/10.1016/j.heares.2019.01.018

Article  PubMed  PubMed Central  Google Scholar 

Henry KS (2022) Animal models of hidden hearing loss: does auditory-nerve-fiber loss cause real-world listening difficulties? Mol Cell Neurosci 118:103692. https://doi.org/10.1016/j.mcn.2021.103692

Article  CAS  PubMed  Google Scholar 

Hickox AE, Larsen E, Heinz MG, Shinobu L, Whitton JP (2017) Translational issues in cochlear synaptopathy. Hear Res 349:164–171. https://doi.org/10.1016/j.heares.2016.12.010

Article  PubMed  PubMed Central  Google Scholar 

Kujawa SG, Liberman MC (2009) Adding insult to injury: cochlear nerve degeneration after “temporary” noise-induced hearing loss. J Neurosci 29(45):14077–14085. https://doi.org/10.1523/JNEUROSCI.2845-09.2009

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lin HW, Furman AC, Kujawa SG, Liberman MC (2011) Primary neural degeneration in the Guinea pig cochlea after reversible noise-induced threshold shift. J Assoc Res Otolaryngol 12(5):605–616. https://doi.org/10.1007/s10162-011-0277-0

Article  PubMed  PubMed Central  Google Scholar 

Yuan Y, Shi F, Yin Y, Tong M, Lang H, Polley DB, Liberman MC, Edge AS (2014) Ouabain-induced cochlear nerve degeneration: synaptic loss and plasticity in a mouse model of auditory neuropathy. J Assoc Res Otolaryngol 15(1):31–43. https://doi.org/10.1007/s10162-013-0419-7

Article  PubMed  Google Scholar 

Chambers AR, Resnik J, Yuan Y, Whitton JP, Edge AS, Liberman MC, Polley DB (2016) Central gain restores auditory processing following near-complete cochlear denervation. Neuron 89(4):867–879. https://doi.org/10.1016/j.neuron.2015.12.041

Article  CAS  PubMed  PubMed Central  Google Scholar 

Henry KS, Abrams KS (2018) Persistent auditory nerve damage following kainic acid excitotoxicity in the budgerigar (Melopsittacus undulatus). J Assoc Res Otolaryngol 19(4):435–449. https://doi.org/10.1007/s10162-018-0671-y

Article  PubMed  PubMed Central  Google Scholar 

McLennan H (1983) Receptors for the excitatory amino acids in the mammalian central nervous system. Prog Neurobiol 20(3–4):251–271. https://doi.org/10.1016/0301-0082(83)90004-7

Article  CAS  PubMed  Google Scholar 

Pujol R, Lenoir M, Robertson D, Eybalin M, Johnstone BM (1985) Kainic acid selectively alters auditory dendrites connected with cochlear inner hair cells. Hear Res 18(2):145–151. https://doi.org/10.1016/0378-5955(85)90006-1

Article  CAS  PubMed  Google Scholar 

Juiz JM, Rueda J, Merchan JA, Sala ML (1989) The effects of kainic acid on the cochlear ganglion of the rat. Hear Res 40(1–2):65–74. https://doi.org/10.1016/0378-5955(89)90100-7

Article  CAS  PubMed  Google Scholar 

Shero M, Salvi RJ, Chen L, Hashino E (1998) Excitotoxic effect of kainic acid on chicken cochlear afferent neurons. Neurosci Lett 257(2):81–84. https://doi.org/10.1016/s0304-3940(98)00821-0

Article  CAS  PubMed  Google Scholar 

Sun H, Hashino E, Ding DL, Salvi RJ (2001) Reversible and irreversible damage to cochlear afferent neurons by kainic acid excitotoxicity. J Comp Neurol 430(2):172–181. https://doi.org/10.1002/1096-9861(20010205)430:2%3c172::aid-cne1023%3e3.0.co;2-w

Article  CAS  PubMed  Google Scholar 

Zheng XY, Wang J, Salvi RJ, Henderson D (1996) Effects of kainic acid on the cochlear potentials and distortion product otoacoustic emissions in chinchilla. Hear Res 95(1–2):161–167. https://doi.org/10.1016/0378-5955(96)00047-0

Article  CAS  PubMed  Google Scholar 

Ding D, Qi W, Jiang H, Salvi R (2021) Excitotoxic damage to auditory nerve afferents and spiral ganglion neurons is correlated with developmental upregulation of AMPA and KA receptors. Hear Res 411:108358. https://doi.org/10.1016/j.heares.2021.108358

Article  PubMed  Google Scholar 

Walia A, Lee C, Hartsock J, Goodman SS, Dolle R, Salt AN, Lichtenhan JT, Rutherford MA (2021) Reducing auditory nerve excitability by acute antagonism of Ca(2+)-permeable AMPA receptors. Front Synaptic Neurosci 13:680621. https://doi.org/10.3389/fnsyn.2021.680621

Article  CAS  PubMed  PubMed Central  Google Scholar 

Okanoya K, Dooling RJ (1987) Hearing in passerine and psittacine birds: a comparative study of absolute and masked auditory thresholds. J Comp Psychol 101(1):7–15. https://doi.org/10.1037/0735-7036.101.1.7

Article  CAS  PubMed  Google Scholar 

Henry KS, Amburgey KN, Abrams KS, Carney LH (2020) Identifying cues for tone-in-noise detection using decision variable correlation in the budgerigar (Melopsittacus undulatus). J Acoust Soc Am 147(2):984. https://doi.org/10.1121/10.0000621

Article  PubMed  PubMed Central  Google Scholar 

Dent ML, Dooling RJ, Pierce AS (2000) Frequency discrimination in budgerigars (Melopsittacus undulatus): effects of tone duration and tonal context. J Acoust Soc Am 107(5 Pt 1):2657–2664. https://doi.org/10.1121/1.428651

Article  CAS  PubMed  Google Scholar 

Dooling RJ, Searcy MH (1981) Amplitude-nodulation thresholds for the parakeet (Melopsittacus-undulatus). J Comp Physiol 143(3):383–388. https://doi.org/10.1007/Bf00611177

Article  Google Scholar 

Carney LH, Ketterer AD, Abrams KS, Schwarz DM, Idrobo F (2013) Detection thresholds for amplitude modulations of tones in budgerigar, rabbit, and human. Adv Exp Med Biol 787:391–398. https://doi.org/10.1007/978-1-4614-1590-9_43

Article  PubMed  PubMed Central  Google Scholar 

Henry KS, Neilans EG, Abrams KS, Idrobo F, Carney LH (2016) Neural correlates of behavioral amplitude modulation sensitivity in the budgerigar midbrain. J Neurophysiol 115(4):1905–1916. https://doi.org/10.1152/jn.01003.2015

Article  PubMed  PubMed Central  Google Scholar 

Henry KS, Amburgey KN, Abrams KS, Idrobo F, Carney LH (2017) Formant-frequency discrimination of synthesized vowels in budgerigars (Melopsittacus undulatus) and humans. J Acoust Soc Am 142(4):2073. https://doi.org/10.1121/1.5006912

Article  PubMed  PubMed Central  Google Scholar 

Henry KS, Abrams KS, Forst J, Mender MJ, Neilans EG, Idrobo F, Carney LH (2017) Midbrain synchrony to envelope structure supports behavioral sensitivity to single-formant vowel-like sounds in noise. J Assoc Res Otolaryngol 18(1):165–181. https://doi.org/10.1007/s10162-016-0594-4

Article  PubMed  Google Scholar 

Wong SJ, Abrams KS, Amburgey KN, Wang Y, Henry KS (2019) Effects of selective auditory-nerve damage on the behavioral audiogram and temporal integration in the budgerigar. Hear Res 374:24–34. https://doi.org/10.1016/j.heares.2019.01.019

Article  PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif