Robles L, Ruggero MA (2001) Mechanics of the mammalian cochlea. Physiol Rev 81(3):1305–1352
Article CAS PubMed Google Scholar
Kemp DT (2002) Otoacoustic emissions, their origin in cochlear function, and use. Br Med Bull 63(1):223–241
Zweig G, Shera CA (1995) The origin of periodicity in the spectrum of evoked otoacoustic emissions. The journal of the acoustical society of America. 98(4):2018–2047
Article CAS PubMed Google Scholar
Shera CA, Guinan JJ Jr (1999) Evoked otoacoustic emissions arise by two fundamentally different mechanisms: a taxonomy for mammalian OAES. The journal of the acoustical society of America. 105(2):782–798
Article CAS PubMed Google Scholar
Shera CA, Guinan JJ, Oxenham AJ (2010) Otoacoustic estimation of cochlear tuning: validation in the chinchilla. J Assoc Res Otolaryngol 11(3):343–365
Article PubMed PubMed Central Google Scholar
Bowling T, Wen H, Meenderink SW, Dong W, Meaud J (2021) Intracochlear distortion products are broadly generated by outer hair cells but their contributions to otoacoustic emissions are spatially restricted. Sci Rep 11(1):1–14
Samaras G, Wen H, Meaud J (2023) Broad nonlinearity in reticular lamina vibrations requires compliant organ of Corti structures. Biophys J 122(5):880–891
Article CAS PubMed PubMed Central Google Scholar
Ramamoorthy S, Deo NV, Grosh K (2007) A mechano-electro-acoustical model for the cochlea: response to acoustic stimuli. The journal of the acoustical society of America. 121(5):2758–2773
Meaud J, Grosh K (2010) The effect of tectorial membrane and basilar membrane longitudinal coupling in cochlear mechanics. The journal of the acoustical society of America. 127(3):1411–1421
Article PubMed PubMed Central Google Scholar
He W, Burwood G, Porsov EV, Fridberger A, Nuttall AL, Ren T (2022) The reticular lamina and basilar membrane vibrations in the transverse direction in the basal turn of the living gerbil cochlea. Sci Rep 12(1):19810
Article CAS PubMed PubMed Central Google Scholar
He W, Kemp D, Ren T (2018) Timing of the reticular lamina and basilar membrane vibration in living gerbil cochleae. Elife. 7:37625
Overstreet EH, Temchin AN, Ruggero MA (2002) Basilar membrane vibrations near the round window of the gerbil cochlea. J Assoc Res Otolaryngol 3:351–361
Article PubMed PubMed Central Google Scholar
Cho NH, Puria S (2022) Cochlear motion across the reticular lamina implies that it is not a stiff plate. Sci Rep 12(1):18715
Article CAS PubMed PubMed Central Google Scholar
Shera CA, Guinan JJ Jr (2003) Stimulus-frequency-emission group delay: a test of coherent reflection filtering and a window on cochlear tuning. The journal of the acoustical society of America. 113(5):2762–2772
Shera CA (2001) Intensity-invariance of fine time structure in basilar-membrane click responses: implications for cochlear mechanics. The journal of the acoustical society of America. 110(1):332–348
Article CAS PubMed Google Scholar
Charaziak KK, Shera CA (2021) Reflection-source emissions evoked with clicks and frequency sweeps: comparisons across levels. J Assoc Res Otolaryngol 22:641–658
Article PubMed PubMed Central Google Scholar
Wen H, Meaud J (2022) Link between stimulus otoacoustic emissions fine structure peaks and standing wave resonances in a cochlear model. The journal of the acoustical society of America. 151(3):1875–1894
Article PubMed PubMed Central Google Scholar
Vencovskỳ V, Vetešník A, Gummer AW (2020) Nonlinear reflection as a cause of the short-latency component in stimulus-frequency otoacoustic emissions simulated by the methods of compression and suppression. The journal of the acoustical society of America. 147(6):3992–4008
Shera CA, Bergevin C (2012) Obtaining reliable phase-gradient delays from otoacoustic emission data. The journal of the acoustical society of America. 132(2):927–943
Article PubMed PubMed Central Google Scholar
Moleti A, Longo F, Sisto R (2012) Time-frequency domain filtering of evoked otoacoustic emissions. The journal of the acoustical society of America. 132(4):2455–2467
Elliott SJ, Ku EM, Lineton B (2007) A state space model for cochlear mechanics. The journal of the acoustical society of America. 122(5):2759–2771
Meaud J, Lemons C (2015) Nonlinear response to a click in a time-domain model of the mammalian ear. The journal of the acoustical society of America. 138(1):193–207
Keithley EM (2020) Pathology and mechanisms of cochlear aging. J Neurosci Res 98(9):1674–1684
Article CAS PubMed Google Scholar
Ghaffari R, Aranyosi AJ, Richardson GP, Freeman DM (2010) Tectorial membrane travelling waves underlie abnormal hearing in Tectb mutant mice. Nat Commun 1(1):96
Lemons C, Sellon JB, Boatti E, Filizzola D, Freeman DM, Meaud J (2019) Anisotropic material properties of wild-type and Tectb-/- tectorial membranes. Biophys J 116(3):573–585
Article CAS PubMed PubMed Central Google Scholar
Cheatham MA (2021) Comparing spontaneous and stimulus frequency otoacoustic emissions in mice with tectorial membrane defects. Hear Res 400:108143
Shera CA, Guinan JJ, Oxenham AJ (2002) Revised estimates of human cochlear tuning from otoacoustic and behavioral measurements. Proc Natl Acad Sci 99(5):3318–3323
Article CAS PubMed PubMed Central Google Scholar
Motallebzadeh H, Puria S (2022) Stimulus-frequency otoacoustic emissions and middle-ear pressure gains in a finite-element mouse model. The Journal of the Acoustical Society of America. 152(5):2769–2780
Article PubMed PubMed Central Google Scholar
Choi Y-S, Lee S-Y, Parham K, Neely ST, Kim DO (2008) Stimulus-frequency otoacoustic emission: measurements in humans and simulations with an active cochlear model. The Journal of the Acoustical Society of America. 123(5):2651–2669
Article PubMed PubMed Central Google Scholar
Shera CA, Altoè A (2023) Otoacoustic emissions reveal the micromechanical role of organ-of-Corti cytoarchitecture in cochlear amplification. Proc Natl Acad Sci 120(41):2305921120
Hartmann WM (2004) Signals, sound, and sensation. Springer, New-York, USA
Comments (0)