Kleiderman E, Boily A, Hasilo C, Knoppers BM. Overcoming barriers to facilitate the regulation of multi-centre regenerative medicine clinical trials. Stem Cell Res Ther. 2018;9:1–9.
Zakrzewski JL, Van Den Brink MRM, Hubbell JA. Overcoming immunological barriers in regenerative medicine. Nat Biotechnol. 2014;32:786.
Article CAS PubMed PubMed Central Google Scholar
Järvinen TAH, Järvinen M, Kalimo H. Regeneration of injured skeletal muscle after the injury. Muscles Ligaments Tendons J. 2013;3:337–45.
Chargé SBP, Rudnicki MA. Cellular and molecular regulation of muscle regeneration. Physiol Rev. 2004;84:209–38.
Tidball JG. Inflammatory cell response to acute muscle injury. Med Sci Sports Exerc. 1995;27:1022–32.
Article CAS PubMed Google Scholar
Tsuji S, Taniuchi S, Hasui M, Yamamoto A, Kobayashi Y. Increased nitric oxide production by neutrophils from patients with chronic granulomatous disease on trimethoprim–sulfamethoxazole. Nitric Oxide. 2002;7:283–8.
Article CAS PubMed Google Scholar
Webb NJA, Myers CR, Watson CJ, Bottomley MJ, Brenchley PEC. Activated human neutrophils express vascular endothelial growth factor (vegf). Cytokine. 1998;10:254–7.
Article CAS PubMed Google Scholar
Tidball JG. Inflammatory processes in muscle injury and repair. Am J Physiol Regul Integr Comp Physiol. 2005;288(2):R345–53.
Article CAS PubMed Google Scholar
Arnold L, et al. Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J Exp Med. 2007;204:1057–69.
Article CAS PubMed PubMed Central Google Scholar
Rigamonti E, et al. Requirement of inducible nitric oxide synthase for skeletal muscle regeneration after acute damage. J Immunol. 2013;190:1767–77.
Article CAS PubMed PubMed Central Google Scholar
Dort J, Fabre P, Molina T, Dumont NA. Macrophages are key regulators of stem cells during skeletal muscle regeneration and diseases. Stem Cells Int. 2019;2019:1–20.
Schiaffino S, Pereira MG, Ciciliot S, Rovere-Querini P. Regulatory T cells and skeletal muscle regeneration. FEBS J. 2017;284:517–24.
Article CAS PubMed Google Scholar
Vojnits K, Pan H, Mu X, Li Y. Characterization of an injury induced population of muscle-derived stem cell-like cells. Sci Rep. 2015;5:1–10.
Bader M. 1 Kinins: history and outlook. Kinins. 2011. https://doi.org/10.1515/9783110252354.1/HTML.
Pesquero JB, et al. Hypoalgesia and altered inflammatory responses in mice lacking kinin B1 receptors. Proc Natl Acad Sci U S A. 2000;97:8140–5.
Article CAS PubMed PubMed Central Google Scholar
Cayla C, et al. Mice deficient for both kinin receptors are normotensive and protected from endotoxin-induced hypotension. FASEB J. 2007;21:1689–98.
Article CAS PubMed Google Scholar
Borkowski JA, et al. Targeted disruption of a B2 bradykinin receptor gene in mice eliminates bradykinin action in smooth muscle and neurons. J Biol Chem. 1995;270:13706–10.
Article CAS PubMed Google Scholar
Parreiras-e-Silva LT, et al. The kinin B1 receptor regulates muscle-specific E3 ligases expression and is involved in skeletal muscle mass control. Clin Sci. 2014;127:185–94.
Rampa DR, et al. Kinin B1 receptor blockade attenuates hepatic fibrosis and portal hypertension in chronic liver diseases in mice. J Transl Med. 2022. https://doi.org/10.1186/s12967-022-03808-7.
Article PubMed PubMed Central Google Scholar
Lin X, et al. Kinin B1 receptor blockade and ACE inhibition attenuate cardiac postinfarction remodeling and heart failure in rats. Toxicol Appl Pharmacol. 2016;305:153–60.
Article CAS PubMed Google Scholar
Rampa DR, et al. Reversal of pulmonary arterial hypertension and neointimal formation by kinin B1 receptor blockade. Respir Res. 2021. https://doi.org/10.1186/s12931-021-01875-w.
Article PubMed PubMed Central Google Scholar
Wu D, Lin X, Bernloehr C, Hildebrandt T, Doods H. Effects of a novel bradykinin B1 receptor antagonist and angiotensin II receptor blockade on experimental myocardial infarction in rats. PLoS ONE. 2012;7:e51151.
Article CAS PubMed PubMed Central Google Scholar
Acuña MJ, et al. Blockade of Bradykinin receptors worsens the dystrophic phenotype of mdx mice: differential effects for B1 and B2 receptors. J Cell Commun Signal. 2018;12:589–601.
Meotti FC, et al. Inflammatory muscle pain is dependent on the activation of kinin B 1 and B 2 receptors and intracellular kinase pathways. Br J Pharmacol. 2012;166:1127–39.
Article CAS PubMed PubMed Central Google Scholar
Ruze A, et al. Bradykinin B1 receptor antagonist protects against cold stress–induced erectile dysfunction in rats. Sex Med. 2023. https://doi.org/10.1093/sexmed/qfac004.
Article PubMed PubMed Central Google Scholar
Budu A, et al. Renal fibrosis due to multiple cisplatin treatment is exacerbated by kinin b1 receptor antagonism. Brazilian J Med Biol Res. 2021. https://doi.org/10.1590/1414-431x2021e11353.
Huart A, et al. Kinin B1 receptor antagonism is equally efficient as angiotensin receptor 1 antagonism in reducing renal fibrosis in experimental obstructive nephropathy, but is not additive. Front Pharmacol. 2015. https://doi.org/10.3389/fphar.2015.00008.
Article PubMed PubMed Central Google Scholar
Klein J, et al. Delayed blockade of the kinin B1 receptor reduces renal inflammation and fibrosis in obstructive nephropathy. FASEB J. 2009;23:134–42.
Article CAS PubMed Google Scholar
Wang PHM, et al. Deletion of bradykinin B1 receptor reduces renal fibrosis. Int Immunopharmacol. 2009;9:653–7.
Article CAS PubMed Google Scholar
Wang PHM, et al. Brabykinin B1 receptor antagonism is beneficial in renal ischemia-reperfusion injury. PLoS ONE. 2008. https://doi.org/10.1371/annotation/bde714c3-7f6d-4f03-83b3-e291005c3a39.
Article PubMed PubMed Central Google Scholar
Lagneux C, Bader M, Pesquero JB, Demenge P, Ribuot C. Detrimental implication of B1 receptors in myocardial ischemia: evidence from pharmacological blockade and gene knockout mice. Int Immunopharmacol. 2002;2:815–22.
Article CAS PubMed Google Scholar
Austinat M, et al. Blockade of bradykinin receptor b1 but not bradykinin receptor B2 provides protection from cerebral infarction and brain edema. Stroke. 2009;40:285–93.
Article CAS PubMed Google Scholar
Westermann D, et al. Gene deletion of the kinin receptor B1 attenuates cardiac inflammation and fibrosis during the development of experimental diabetic cardiomyopathy. Diabetes. 2009;58:1373–81.
Article PubMed PubMed Central Google Scholar
Cignachi NP, Pesquero JB, Oliveira RB, Etges A, Campos MM. Kinin B1 receptor deletion affects bone healing in type 1 diabetic mice. J Cell Physiol. 2015;230:3019–28.
Article CAS PubMed Google Scholar
Martins L, et al. Kinin receptors regulate skeletal muscle regeneration: differential effects for B1 and B2 receptors. Inflamm Res. 2023. https://doi.org/10.1007/S00011-023-01766-4.
Article PubMed PubMed Central Google Scholar
Alves JM, et al. Kinin-B2 receptor activity in skeletal muscle regeneration and myoblast differentiation. Stem Cell Rev Rep. 2019;15:48–58.
Article CAS PubMed Google Scholar
Schanstra JP, et al. In vivo bradykinin B2 receptor activation reduces renal fibrosis. J Clin Invest. 2002;110:371–9.
Article CAS PubMed PubMed Central Google Scholar
de Picoli Souza K, et al. Effect of kinin B2 receptor ablation on skeletal muscle development and myostatin gene expression. Neuropeptides 2010;44:209–214. https://doi.org/10.1016/j.npep.2009.12.001
Bledsoe G, et al. Reversal of renal fibrosis, inflammation, and glomerular hypertrophy by Kallikrein gene delivery. Hum Gene Ther. 2006. https://doi.org/10.1089/hum.2006.17.ft-203.
Comments (0)