NK Cell Therapeutics for Hematologic Malignancies: from Potential to Fruition

Lee DW III, et al. Safety and response of incorporating CD19 chimeric antigen receptor T cell therapy in typical salvage regimens for children and young adults with acute lymphoblastic leukemia. Blood. 2015;126(23):684–4.

Article  Google Scholar 

Ruella M, Maus MV. Catch me if you can: leukemia escape after CD19-directed T cell immunotherapies. Comput Struct Biotechnol J. 2016;14:357–62.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Maude SL, et al. Sustained remissions with CD19-specific chimeric antigen receptor (CAR)-modified T cells in children with relapsed/refractory ALL. J Clin Oncol. 2016;34(15_suppl):3011–1.

Article  Google Scholar 

Sterner RC, Sterner RM. CAR-T cell therapy: current limitations and potential strategies. Blood Cancer J. 2021;11(4):69.

Article  PubMed  PubMed Central  Google Scholar 

Hirayama AV, Turtle CJ. Toxicities of CD19 CAR-T cell immunotherapy. Am J Hematol. 2019;94(S1):S42–s49.

Article  CAS  PubMed  Google Scholar 

Mehta RS, et al. NK cell therapy for hematologic malignancies. Int J Hematol. 2018;107(3):262–70.

Article  CAS  PubMed  Google Scholar 

Liu E, et al. Use of CAR-transduced natural killer cells in CD19-positive lymphoid tumors. N Engl J Med. 2020;382(6):545–53.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Berrien-Elliott MM, et al. Multidimensional analyses of donor memory-like NK cells reveal new associations with response after adoptive immunotherapy for leukemia. Cancer Discov. 2020;10(12):1854–71.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu J, Lanier LL. Natural killer cells and cancer. Adv Cancer Res. 2003;90:127–56.

Article  CAS  PubMed  Google Scholar 

Vivier E, et al. Functions of natural killer cells. Nat Immunol. 2008;9(5):503–10.

Article  CAS  PubMed  Google Scholar 

Caligiuri MA. Human natural killer cells. Blood. 2008;112(3):461–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wagner JA, et al. CD56bright NK cells exhibit potent antitumor responses following IL-15 priming. J Clin Invest. 2017;127(11):4042–58.

Article  PubMed  PubMed Central  Google Scholar 

Lanier LL, et al. The relationship of CD16 (Leu-11) and Leu-19 (NKH-1) antigen expression on human peripheral blood NK cells and cytotoxic T lymphocytes. J Immunol. 1986;136(12):4480–6.

Article  CAS  PubMed  Google Scholar 

Prager I, et al. NK cells switch from granzyme B to death receptor-mediated cytotoxicity during serial killing. J Exp Med. 2019;216(9):2113–27.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Roda JM, et al. Natural killer cells produce T cell-recruiting chemokines in response to antibody-coated tumor cells. Cancer Res. 2006;66(1):517–26.

Article  CAS  PubMed  Google Scholar 

Myers JA, Miller JS. Exploring the NK cell platform for cancer immunotherapy. Nat Rev Clin Oncol. 2021;18(2):85–100.

Article  PubMed  Google Scholar 

Granzin M, et al. Shaping of natural killer cell antitumor activity by ex vivo cultivation. Front Immunol. 2017;8:458.

Article  PubMed  PubMed Central  Google Scholar 

Lupo KB, Matosevic S. Natural killer cells as allogeneic effectors in adoptive cancer immunotherapy. Cancers (Basel). 2019;11(6)

Sarvaria A, et al. Umbilical cord blood natural killer cells, their characteristics, and potential clinical applications. Front Immunol. 2017;8:329.

Article  PubMed  PubMed Central  Google Scholar 

Chouaib S, et al. Improving the outcome of leukemia by natural killer cell-based immunotherapeutic strategies. Front Immunol. 2014;5:95.

Article  PubMed  PubMed Central  Google Scholar 

Moretta F, et al. The generation of human innate lymphoid cells is influenced by the source of hematopoietic stem cells and by the use of G-CSF. Eur J Immunol. 2016;46(5):1271–8.

Article  CAS  PubMed  Google Scholar 

Cichocki F, et al. iPSC-derived NK cells maintain high cytotoxicity and enhance in vivo tumor control in concert with T cells and anti-PD-1 therapy. Sci Transl Med. 2020;12(568)

Goulding J, et al. A chimeric antigen receptor uniquely recognizing MICA/B stress proteins provides an effective approach to target solid tumors. Med. 2023;4(7):457–477.e8.

Article  CAS  PubMed  Google Scholar 

Cichocki F, et al. Quadruple gene-engineered natural killer cells enable multi-antigen targeting for durable antitumor activity against multiple myeloma. Nat Commun. 2022;13(1):7341.

Article  PubMed  PubMed Central  Google Scholar 

Tarannum M, Romee R, Shapiro RM. Innovative strategies to improve the clinical application of NK cell-based immunotherapy. Front Immunol. 2022;13:859177.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Valamehr B, et al. Developing defined culture systems for human pluripotent stem cells. Regen Med. 2011;6(5):623–34.

Article  PubMed  Google Scholar 

Valamehr B, et al. A novel platform to enable the high-throughput derivation and characterization of feeder-free human iPSCs. Sci Rep. 2012;2:213.

Article  PubMed  PubMed Central  Google Scholar 

Abujarour R, et al. Optimized surface markers for the prospective isolation of high-quality hiPSCs using flow cytometry selection. Sci Rep. 2013;3:1179.

Article  PubMed  PubMed Central  Google Scholar 

Valamehr B, et al. Platform for induction and maintenance of transgene-free hiPSCs resembling ground state pluripotent stem cells. Stem Cell Rep. 2014;2(3):366–81.

Article  CAS  Google Scholar 

Hermanson DL, et al. Induced pluripotent stem cell-derived natural killer cells for treatment of ovarian cancer. Stem Cells. 2016;34(1):93–101.

Article  CAS  PubMed  Google Scholar 

Li Y, et al. Human iPSC-derived natural killer cells engineered with chimeric antigen receptors enhance anti-tumor activity. Cell Stem Cell. 2018;23(2):181–192.e5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gong Y, et al. Chimeric antigen receptor natural killer (CAR-NK) cell design and engineering for cancer therapy. J Hematol Oncol. 2021;14(1):73.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Woan KV, et al. Harnessing features of adaptive NK cells to generate iPSC-derived NK cells for enhanced immunotherapy. Cell Stem Cell. 2021;28(12):2062–2075.e5.

Article  CAS  PubMed  Google Scholar 

Jing Y, et al. Identification of an ADAM17 cleavage region in human CD16 (FcγRIII) and the engineering of a non-cleavable version of the receptor in NK cells. PLoS One. 2015;10(3):e0121788.

Article  PubMed  PubMed Central  Google Scholar 

Liu E, et al. Cord blood NK cells engineered to express IL-15 and a CD19-targeted CAR show long-term persistence and potent antitumor activity. Leukemia. 2018;32(2):520–31.

Article  CAS  PubMed  Google Scholar 

Daher M, et al. Targeting a cytokine checkpoint enhances the fitness of armored cord blood CAR-NK cells. Blood. 2021;137(5):624–36.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huntington ND, et al. IL-15 trans-presentation promotes human NK cell development and differentiation in vivo. J Exp Med. 2009;206(1):25–34.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhu H, et al. Metabolic reprograming via deletion of CISH in human iPSC-derived NK cells promotes in vivo persistence and enhances anti-tumor activity. Cell Stem Cell. 2020;27(2):224–237.e6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rossi J, et al. Preinfusion polyfunctional anti-CD19 chimeric antigen receptor T cells are associated with clinical outcomes in NHL. Blood. 2018;132(8):804–14.

Article  CAS  PubMed  PubMed Central  Google Scholar 

André P, et al. Anti-NKG2A mAb is a checkpoint inhibitor that promotes anti-tumor immunity by unleashing both T and NK cells. Cel

Comments (0)

No login
gif