World Health Organisation. World malaria report 2021. World Health Organisation, Editor. 2022.
Doolan D, Dobano C, Baird J. Acquired immunity to malaria. Clin Microbiol Rev. 2009;22(1):13–36.
Article CAS PubMed PubMed Central Google Scholar
Ranson H, Lissenden N. Insecticide resistance in African anopheles mosquitoes: a worsening situation that needs urgent action to maintain malaria control. Trends Parasitol. 2016;32(3):187–96.
Article CAS PubMed Google Scholar
Blasco B, Leroy D, Fidock DA. Antimalarial drug resistance: linking Plasmodium falciparum parasite biology to the clinic. Nat Med. 2017;23(8):917–28.
Article CAS PubMed PubMed Central Google Scholar
Phyo AP, et al. Declining efficacy of artemisinin combination therapy against P. falciparum malaria on the Thai-Myanmar border (2003–2013): the role of parasite genetic factors. Clin Infect Dis. 2016;63(6):784–91.
Article CAS PubMed PubMed Central Google Scholar
van der Pluijm RW, et al. Determinants of dihydroartemisinin-piperaquine treatment failure in Plasmodium falciparum malaria in Cambodia, Thailand, and Vietnam: a prospective clinical, pharmacological, and genetic study. Lancet Infect Dis. 2019;19(9):952–61.
Article PubMed PubMed Central Google Scholar
Balikagala B, et al. Evidence of artemisinin-resistant malaria in Africa. N Engl J Med. 2021;385(13):1163–71.
Article CAS PubMed Google Scholar
Stanisic DI, Barry AE, Good MF. Escaping the immune system: How the malaria parasite makes vaccine development a challenge. Trends Parasitol. 2013;29(12):612–22.
Article CAS PubMed Google Scholar
Malaria Vaccine Funders Group. Malaria vaccine technology roadmap. 2013.
Malaria vaccines: preferred product characteristics and clinical development considerations. Geneva: World Health Organization; 2022. Licence: CC BY-NC-SA 3.0 IGO.
Bijker EM, et al. Protection against malaria after immunization by chloroquine prophylaxis and sporozoites is mediated by preerythrocytic immunity. Proc Natl Acad Sci USA. 2013;110(19):7862–7.
Article CAS PubMed PubMed Central Google Scholar
Barry AE, et al. Contrasting population structures of the genes encoding ten leading vaccine-candidate antigens of the human malaria parasite, Plasmodium falciparum. PLoS ONE. 2009;4(12): e8497.
Article PubMed PubMed Central Google Scholar
Neafsey DE, et al. Genetic diversity and protective efficacy of the RTS, S/AS01 malaria vaccine. N Engl J Med. 2015;373(21):2025–37.
Article CAS PubMed PubMed Central Google Scholar
Genton B, et al. A recombinant blood-stage malaria vaccine reduces Plasmodium falciparum density and exerts selective pressure on parasite populations in a phase 1–2b trial in Papua New Guinea. J Infect Dis. 2002;185(6):820–7.
World Health Organisation. Malaria vaccines: WHO Position Paper—March 2022. 2022.
Stanisic DI, McCarthy JS, Good MF. Controlled human malaria infection: applications, advances, and challenges. Infect Immun. 2018;86(1):1–17.
Murphy SC, et al. PfSPZ-CVac efficacy against malaria increases from 0% to 75% when administered in the absence of erythrocyte stage parasitemia: a randomized, placebo-controlled trial with controlled human malaria infection. PLoS Pathog. 2021;17(5): e1009594.
Article CAS PubMed PubMed Central Google Scholar
Studniberg SI, et al. Molecular profiling reveals features of clinical immunity and immunosuppression in asymptomatic P falciparum malaria. Mol Syst Biol. 2022;18(4):e10824.
Article CAS PubMed PubMed Central Google Scholar
Stanisic DI, Good MF. Whole parasite blood stage vaccines. In: Kremsner PG, Krishna S, editors. Encyclopedia of malaria. New York: Springer, New York; 2018.
Stanisic DI, et al. Vaccination with chemically attenuated Plasmodium falciparum asexual blood-stage parasites induces parasite-specific cellular immune responses in malaria-naive volunteers: a pilot study. BMC Med. 2018;16(1):184.
Article CAS PubMed PubMed Central Google Scholar
Good MF, et al. Cross-species malaria immunity induced by chemically attenuated parasites. J Clin Invest. 2013;123:3353–62.
Article CAS PubMed PubMed Central Google Scholar
Webster R, et al. Safety, infectivity and immunogenicity of a genetically attenuated blood-stage malaria vaccine. BMC Med. 2021;19(1):293.
Article CAS PubMed PubMed Central Google Scholar
Ogutu BR, et al. Blood stage malaria vaccine eliciting high antigen-specific antibody concentrations confers no protection to young children in Western Kenya. PLoS ONE. 2009;4(3): e4708.
Article PubMed PubMed Central Google Scholar
Sagara I, et al. A randomized controlled phase 2 trial of the blood stage AMA1-C1/Alhydrogel malaria vaccine in children in Mali. Vaccine. 2009;27(23):3090–8.
Article CAS PubMed PubMed Central Google Scholar
Thera MA, et al. A field trial to assess a blood-stage malaria vaccine. N Engl J Med. 2011;365(11):1004–13.
Article CAS PubMed PubMed Central Google Scholar
Payne RO, et al. Demonstration of the blood-stage Plasmodium falciparum controlled human malaria infection model to assess efficacy of the P. falciparum apical membrane antigen 1 vaccine, FMP2.1/AS01. J Infect Dis. 2016;213(11):1743–51.
Article CAS PubMed PubMed Central Google Scholar
Sirima SB, Cousens S, Druilhe P. Protection against malaria by MSP3 candidate vaccine. N Engl J Med. 2011;365(11):1062–4.
Article CAS PubMed Google Scholar
Palacpac NM, et al. Phase 1b randomized trial and follow-up study in Uganda of the blood-stage malaria vaccine candidate BK-SE36. PLoS ONE. 2013;8(5): e64073.
Article CAS PubMed PubMed Central Google Scholar
Minassian AM, et al. Reduced blood-stage malaria growth and immune correlates in humans following RH5 vaccination. Med (NY). 2021;2(6):701-719 e19.
Sirima SB, et al. A phase 2b randomized, controlled trial of the efficacy of the GMZ2 malaria vaccine in African children. Vaccine. 2016;34(38):4536–42.
Article CAS PubMed Google Scholar
Dejon-Agobe JC, et al. Controlled human malaria infection of healthy adults with lifelong malaria exposure to assess safety, immunogenicity, and efficacy of the asexual blood stage malaria vaccine candidate GMZ2. Clin Infect Dis. 2019;69(8):1377–84.
Article CAS PubMed Google Scholar
O’Neil-Dunne I, et al. Gravidity-dependent production of antibodies that inhibit binding of Plasmodium falciparum-infected erythrocytes to placental chondroitin sulfate proteoglycan during pregnancy. Infect Immun. 2001;69(12):7487–92.
Article CAS PubMed PubMed Central Google Scholar
Fried M, et al. Maternal antibodies block malaria. Nature. 1998;395(6705):851–2.
Article CAS PubMed Google Scholar
Fried M, Duffy PE. Adherence of Plasmodium falciparum to chondroitin sulfate A in the human placenta. Science. 1996;272(5267):1502–4.
Article CAS PubMed Google Scholar
Mordmuller B, et al. First-in-human, randomized, double-blind clinical trial of differentially adjuvanted PAMVAC, a vaccine candidate to prevent pregnancy-associated malaria. Clin Infect Dis. 2019;69(9):1509–16.
Article PubMed PubMed Central Google Scholar
Sirima SB, et al. PRIMVAC vaccine adjuvanted with Alhydrogel or GLA-SE to prevent placental malaria: a first-in-human, randomised, double-blind, placebo-controlled study. Lancet Infect Dis. 2020;20(5):585–97.
Article CAS PubMed Google Scholar
Chichester JA, et al. Safety and immunogenicity of a plant-produced Pfs25 virus-like particle as a transmission blocking vaccine against malaria: a Phase 1 dose-escalation study in healthy adults. Vaccine. 2018;36(39):5865–71.
Article CAS PubMed PubMed Central Google Scholar
Talaat KR, et al. Safety and immunogenicity of Pfs25-EPA/Alhydrogel(R), a transmission blocking vaccine against Plasmodium falciparum: an open label study in malaria naive adults. PLoS ONE. 2016;11(10): e0163144.
Article PubMed PubMed Central Google Scholar
Sagara I, et al. Safety and immunogenicity of Pfs25H-EPA/Alhydrogel, a transmission-blocking vaccine against Plasmodium falciparum: a randomised, double-blind, comparator-controlled, dose-escalation study in healthy Malian adults. Lancet Infect Dis. 2018;18(9):969–82.
Comments (0)