Empowering health geography research with location-based social media data: innovative food word expansion and energy density prediction via word embedding and machine learning

Yin J, Gao Y, Du Z, Wang S. Exploring multi-scale spatiotemporal twitter user mobility patterns with a visual-analytics approach. Int J Geo-Information. 2016;5:187.

Article  Google Scholar 

Hu Y, Gao S, Janowicz K, Yu B, Li W, Prasad S. Extracting and understanding urban areas of interest using geotagged photos. Comput Environ Urban Syst. 2015;54:240–54.

Article  Google Scholar 

Jiang S, Alves A, Rodrigues F, Ferreira J Jr, Pereira FC. Mining point-of-interest data from social networks for urban land use classification and disaggregation. Comput Environ Urban Syst. 2015;53:36–46.

Article  Google Scholar 

Liu Y, Liu X, Gao S, Gong L, Kang C, Zhi Y, et al. Social sensing: a new approach to understanding our socioeconomic environments. Ann Assoc Am Geogr. 2015;105:512–30.

Article  Google Scholar 

Yao Y, Li X, Liu X, Liu P, Liang Z, Zhang J, et al. Sensing spatial distribution of urban land use by integrating points-of-interest and Google Word2Vec model. Int J Geogr Inf Sci. 2017;31:825–48.

Article  Google Scholar 

Noulas A, Scellato S, Mascolo C, Pontil M. Exploiting semantic annotations for clustering geographic areas and users in location-based social networks. Proc Int AAAI Conf Web Soc Media. 2011. pp. 32–5.

Banzhaf E, Netzband M. Monitoring urban land use changes with remote sensing techniques. Appl Urban Ecol A Glob Framew. 2012;18–32.

Schneider A, Woodcock CE. Compact, dispersed, fragmented, extensive? A comparison of urban growth in twenty-five global cities using remotely sensed data, pattern metrics and census information. Urban Stud. 2008;45:659–92.

Article  Google Scholar 

Benediktsson JA, Pesaresi M, Amason K. Classification and feature extraction for remote sensing images from urban areas based on morphological transformations. IEEE Trans Geosci Remote Sens. 2003;41:1940–9.

Article  Google Scholar 

Jensen JR, Cowen DC. Remote sensing of urban/suburban infrastructure and socio-economic attributes. Photogramm Eng Remote Sensing. 1999;65:611–22.

Google Scholar 

Frank LD, Sallis JF, Saelens BE, Leary L, Cain K, Conway TL, et al. The development of a walkability index: application to the Neighborhood Quality of Life Study. Br J Sports Med. 2010;44:924–33.

Article  CAS  PubMed  Google Scholar 

Leslie E, Coffee N, Frank L, Owen N, Bauman A, Hugo G. Walkability of local communities: using geographic information systems to objectively assess relevant environmental attributes. Health Place. 2007;13:111–22.

Article  PubMed  Google Scholar 

Owen N, Cerin E, Leslie E, Coffee N, Frank LD, Bauman AE, et al. Neighborhood walkability and the walking behavior of Australian adults. Am J Prev Med. 2007;33:387–95.

Article  PubMed  Google Scholar 

Miller HJ, Witlox F, Tribby CP. Developing context-sensitive livability indicators for transportation planning: a measurement framework. J Transp Geogr Elsevier. 2013;26:51–64.

Article  Google Scholar 

Wenzhong Z. Study on Intrinsic Meanings of the Livable City and the Evaluation System of Livable City. Urban Plan forum. 2007. p. 30–4.

Sakamoto A, Fukui H. Development and application of a livable environment evaluation support system using Web GIS. J Geogr Syst. 2004;6:175–95.

Article  Google Scholar 

McEntee J, Agyeman J. Towards the development of a GIS method for identifying rural food deserts: Geographic access in Vermont, USA. Appl Geogr. 2010;30:165–76.

Article  Google Scholar 

Todd A, Copeland A, Husband A, Kasim A, Bambra C. Access all areas? An area-level analysis of accessibility to general practice and community pharmacy services in England by urbanity and social deprivation. BMJ Open. 2015;5:e007328.

Article  PubMed  PubMed Central  Google Scholar 

Zhou X, Zhang L. Crowdsourcing functions of the living city from Twitter and Foursquare data. Cartogr Geogr Inf Sci. 2016;43:393–404.

Article  Google Scholar 

Latham A. Research, performance, and doing human geography: Some reflections on the diary–photograph, diary–interview method. Cult Geogr Read. Routledge; 2008. pp. 80–8.

Talen E. Bottom-up GIS: A new tool for individual and group expression in participatory planning. J Am Plan Assoc. 2000;66:279–94.

Article  Google Scholar 

Kwan M-P, Ding G. Geo-narrative: extending geographic information systems for narrative analysis in qualitative and mixed-method research. Prof Geogr. 2008;60:443–65.

Article  Google Scholar 

Kwan M-P. Beyond space (as we knew it): Toward temporally integrated geographies of segregation, health, and accessibility. Ann Assoc Am Geogr. 2013;103:1078–86.

Article  Google Scholar 

Bell SL, Wheeler BW, Phoenix C. Using geonarratives to explore the diverse temporalities of therapeutic landscapes: Perspectives from “green” and “blue” settings. Ann Am Assoc Geogr. 2017;107:93–108.

Google Scholar 

Mennis J, Mason MJ, Cao Y. Qualitative GIS and the visualization of narrative activity space data. Int J Geogr Inf Sci. 2013;27:267–91.

Article  PubMed  Google Scholar 

Adams B, McKenzie G. Inferring thematic places from spatially referenced natural language descriptions. Crowdsourcing Geogr Knowl. Springer; 2013. pp. 201–21.

Crooks A, Pfoser D, Jenkins A, Croitoru A, Stefanidis A, Smith D, et al. Crowdsourcing urban form and function. Int J Geogr Inf Sci. 2015;29:720–41.

Article  Google Scholar 

Dalton CM, Thatcher J. Inflated granularity: spatial “big data” and geodemographics. Big Data Soc. 2015;2:2053951715601144.

Kruikemeier S. How political candidates use Twitter and the impact on votes. Comput Human Behav Elsevier. 2014;34:131–9.

Article  Google Scholar 

Maynard D, Funk A. Automatic detection of political opinions in tweets. Ext Semant web Conf. Springer; 2011. pp. 88–99.

McKelvey K, DiGrazia J, Rojas F. Twitter publics: How online political communities signaled electoral outcomes in the 2010 US house election. Info Commun Soc. 2014;17:436–50.

Article  Google Scholar 

Gorodnichenko Y, Pham T, Talavera O. Social media, sentiment and public opinions: Evidence from #Brexit and #USElection. Eur Econ Rev. 2021;136:103772.

Article  Google Scholar 

Sakaki T, Okazaki M, Matsuo Y. Earthquake shakes twitter users: real-time event detection by social sensors. Proc 19th Int Conf World wide web. 2010. pp. 851–60.

Roche S, Propeck-Zimmermann E, Mericskay B. GeoWeb and crisis management: Issues and perspectives of volunteered geographic information. GeoJournal Springer. 2013;78:21–40.

Article  Google Scholar 

Shelton T, Poorthuis A, Graham M, Zook M. Mapping the data shadows of Hurricane Sandy: uncovering the sociospatial dimensions of ‘big data.’ Geoforum Elsevier. 2014;52:167–79.

Article  Google Scholar 

Chen E, Lerman K, Ferrara E. Tracking social media discourse about the covid-19 pandemic: Development of a public coronavirus twitter data set. JMIR Public Heal Surveill. 2020;6:e19273.

Article  Google Scholar 

Signorini A, Segre AM, Polgreen PM. The use of Twitter to track levels of disease activity and public concern in the US during the influenza A H1N1 pandemic. PLoS ONE. 2011;6:e19467.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aramaki E, Maskawa S, Morita M. Twitter catches the flu: detecting influenza epidemics using Twitter. Proc 2011 Conf Empir methods Nat Lang Process. 2011. pp. 1568–76.

Guntuku SC, Sherman G, Stokes DC, Agarwal AK, Seltzer E, Merchant RM, et al. Tracking mental health and symptom mentions on Twitter during COVID-19. J Gen Intern Med Springer. 2020;35:2798–800.

Article  Google Scholar 

Lester CA, Wang M, Vydiswaran VGV. Describing the patient experience from Yelp reviews of community pharmacies. J Am Pharm Assoc Elsevier. 2019;59:349–55.

Article  Google Scholar 

Johari K, Kellogg C, Vazquez K, Irvine K, Rahman A, Enguidanos S. Ratings game: an analysis of nursing home compare and Yelp ratings. BMJ Qual Saf. 2018;27:619–24.

Article  PubMed  Google Scholar 

Wang Z, Zhang D, Yang D, Yu Z, Zhou X, Yu Z. Investigating city characteristics based on community profiling in LBSNs. 2012 Second Int Conf Cloud Green Comput. IEEE; 2012. pp. 578–85.

Chen F, Joshi D, Miura Y, Ohkuma T. Social media-based profiling of business locations. Proc 3rd ACM Multimed Work Geotagging Its Appl Multimed. 2014. pp. 1–6.

Mitchell L, Frank MR, Harris KD, Dodds PS, Danforth CM. The geography of happiness: Connecting twitter sentiment and expression, demographics, and objective characteristics of place. PLoS ONE. 2013;8:e64417.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gao S, Janowicz K, Couclelis H. Extracting urban functional regions from points of interest and human activities on location-based social networks. Trans GIS. 2017;21:446–67.

Article  Google Scholar 

Goodchild MF. Citizens as voluntary sensors: spatial data infrastructure in the world of Web 2.0. Int J Spat data infrastructures Res. 2007;2:24–32.

Google Scholar 

Lee R, Wakamiya S, Sumiya K. Urban area characterization based on crowd behavioral lifelogs over Twitter. Pers ubiquitous Comput Springer. 2013;17:605–20.

Article  Google Scholar 

Li L, Goodchild MF, Xu B. Spatial, temporal, and socioeconomic patterns in the use of Twitter and Flickr. Cartogr Geogr Inf Sci. 2013;40:61–77.

Article  CAS  Google Scholar 

Steiger E, Westerholt R, Zipf A. Research on social media feeds–A GIScience perspective. Eur Handb Crowdsourced Geogr Inf. 2016. https://doi.org/10.5334/bax.r.

Article  Google Scholar 

Tsou M-H, Yang J-A, Lusher D, Han S, Spitzberg B, Gawron JM, et al. Mapping social activities and concepts with social media (Twitter) and web search engines (Yahoo and Bing): a case study in 2012 US Presidential Election. Cartogr Geogr Inf Sci. 2013;40:337–48.

Article  Google Scholar 

Yan L, Duarte F, Wang D, Zheng S, Ratti C. Exploring the effect of air pollution on social activity in China using geotagged social media check-in data. Cities Elsevier. 2019;91:116–25.

Article  Google Scholar 

Johnson IL, Sengupta S, Schöning J, Hecht B. The geography and importance of localness in geotagged social media. Proc 2016 CHI Conf Hum Factors Comput Syst. 2016. pp. 515–26.

Chaniotakis E, Antoniou C. Use of geotagged social media in urban settings: Empirical evidence on its potential from twitter. 2015 IEEE 18th Int Conf Intell Transp Syst. IEEE; 2015. pp. 214–9.

Niu H, Silva EA. Understanding temporal and spatial patterns of urban activities across demographic groups through geotagged social media data. Comput Environ Urban Syst. 2023;100:101934.

Article  Google Scholar 

Mehta S, Jain G, Mala S. Natural Language Processing Approach and Geospatial Clustering to Explore the Unexplored Geotags Using Media. 2023 13th Int Conf Cloud Comput Data Sci Eng. IEEE; 2023. Pp. 672–5.

Zhai W, Peng Z-R, Yuan F. Examine the effects of neighborhood equity on disaster situational awareness: harness machine learning and geotagged Twitter data. Int J Disaster Risk Reduct. 2020;48:101611.

Article  Google Scholar 

Zhang S, Zhou W. Recreational visits to urban parks and factors affecting park visits: evidence from geotagged social media data. Landsc Urban Plan. 2018;180:27–35.

Article  Google Scholar 

Hiippala T, Hausmann A, Tenkanen H, Toivonen T. Exploring the linguistic landscape of geotagged social media content in urban environments. Digit Scholarsh Humanit. 2019;34:290–309.

Article  Google Scholar 

Girardin F, Vaccari A, Gerber A, Biderman A, Ratti C. Quantifying urban attractiveness from the distribution and density of digital footprints. Int J Spat Data Infrastruct Res. 2009;4:175–200.

Comments (0)

No login
gif