Proteome analysis of CD5-positive diffuse large B cell lymphoma FFPE tissue reveals downregulation of DDX3X, DNAJB1, and B cell receptor signaling pathway proteins including BTK and Immunoglobulins

Schmitz R, Wright GW, Huang DW, Johnson CA, Phelan JD, Wang JQ, et al. Genetics and pathogenesis of diffuse large b-cell lymphoma. N Engl J Med. 2018;378(15):1396–407. https://doi.org/10.1056/NEJMoa1801445.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chapuy B, Stewart C, Dunford AJ, Kim J, Kamburov A, Redd RA, et al. Molecular subtypes of diffuse large B cell lymphoma are associated with distinct pathogenic mechanisms and outcomes. Nat Med. 2018;24(5):679–90. https://doi.org/10.1038/s41591-018-0016-8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nair RR, Tolentino JH, Hazlehurst LA. Role of STAT3 in transformation and drug resistance in cml. Front Oncol. 2012;2:30. https://doi.org/10.3389/fonc.2012.00030.

Article  PubMed  PubMed Central  Google Scholar 

Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J, Vardiman JW. WHO classification of tumours of haematopoietic and lymphoid tissues, volume 2. 4th ed. Lyon: International agency for research on cancer; 2017.

Google Scholar 

Miyazaki K, Asano N, Yamada T, Miyawaki K, Sakai R, Igarashi T, et al. DA-EPOCH-R combined with high-dose methotrexate in patients with newly diagnosed stage II-IV CD5-positive diffuse large B-cell lymphoma: a single-arm, open-label, phase 2 study. Haematologica. 2019;105(9):2308–15. https://doi.org/10.3324/haematol.2019.231076.

Article  CAS  PubMed Central  Google Scholar 

Tagawa H, Suguro M, Tsuzuki S, Matsuo K, Karnan S, Ohshima K, et al. Comparison of genome profiles for identification of distinct subgroups of diffuse large B-cell lymphoma. Blood. 2005;106(5):1770–7. https://doi.org/10.1182/blood-2005-02-0542.

Article  CAS  PubMed  Google Scholar 

Azzam HS, Grinberg A, Lui K, Shen H, Shores EW, Love PE. CD5 expression is developmentally regulated by T cell receptor (TCR) signals and TCR avidity. J Exp Med. 1998;188(12):2301–11. https://doi.org/10.1084/jem.188.12.2301.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Blaize G, Daniels-Treffandier H, Aloulou M, Rouquie N, Yang C, Marcellin M, et al. CD5 signalosome coordinates antagonist TCR signals to control the generation of Treg cells induced by foreign antigens. Proc Natl Acad Sci USA. 2020;117(23):12969–79. https://doi.org/10.1073/pnas.1917182117.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yoshimoto M. The ontogeny of murine B-1a cells. Int J Hematol. 2020;111(5):622–7. https://doi.org/10.1007/s12185-019-02787-8.

Article  CAS  PubMed  Google Scholar 

Youinou P, Renaudineau Y. The paradox of CD5-expressing B cells in systemic lupus erythematosus. Autoimmun Rev. 2007;7(2):149–54. https://doi.org/10.1016/j.autrev.2007.02.016.

Article  CAS  PubMed  Google Scholar 

Mishima Y, Terui Y, Yokoyama M, Nishimura N, Ueda K, Kusano Y, et al. Bearing 19q13 aberration predicts poor prognosis in non-germinal centre type of CD5(+) DLBCL. Br J Haematol. 2018;183(4):661–4. https://doi.org/10.1111/bjh.15001.

Article  PubMed  Google Scholar 

Niitsu N, Okamoto M, Tamaru JI, Yoshino T, Nakamura N, Nakamura S, et al. Clinicopathologic characteristics and treatment outcome of the addition of rituximab to chemotherapy for CD5-positive in comparison with CD5-negative diffuse large B-cell lymphoma. Ann Oncol. 2010;21(10):2069–74. https://doi.org/10.1093/annonc/mdq057.

Article  CAS  PubMed  Google Scholar 

Machida H, Shinohara T, Hatakeyama N, Okano Y, Nakano M, Tobiume M, et al. CD5-positive diffuse large B cell lymphoma infiltrating the central nervous system presenting Guillain-Barre-like syndrome after chemotherapy. J Clin Exp Hematop. 2012;52(3):199–204. https://doi.org/10.3960/jslrt.52.199.

Article  PubMed  Google Scholar 

Miyazaki K. CD5-positive DLBCL: molecular basis and treatment strategies. Rinsho Ketsueki. 2015;56(8):1038–44. https://doi.org/10.11406/rinketsu.56.1038. (Japanese).

Article  PubMed  Google Scholar 

Miyazaki K, Yamaguchi M, Suzuki R, Kobayashi Y, Maeshima AM, Niitsu N, et al. CD5-positive diffuse large B-cell lymphoma: a retrospective study in 337 patients treated by chemotherapy with or without rituximab. Ann Oncol. 2011;22(7):1601–7. https://doi.org/10.1093/annonc/mdq627.

Article  CAS  PubMed  Google Scholar 

Kakimoto Y, Ito S, Abiru H, Kotani H, Ozeki M, Tamaki K, et al. Sorbin and SH3 domain-containing protein 2 is released from infarcted heart in the very early phase: proteomic analysis of cardiac tissues from patients. J Am Heart Assoc. 2013;2(6): e000565. https://doi.org/10.1161/JAHA.113.000565.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kakimoto Y, Tsuruyama T, Yamamoto T, Furuta M, Kotani H, Ozeki M, et al. Novel in situ pretreatment method for significantly enhancing the signal in MALDI-TOF MS of formalin-fixed paraffin-embedded tissue sections. PLoS ONE. 2012;7(8): e41607. https://doi.org/10.1371/journal.pone.0041607.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kiso K, Yoshifuji H, Oku T, Hikida M, Kitagori K, Hirayama Y, et al. Transgelin-2 is upregulated on activated B-cells and expressed in hyperplastic follicles in lupus erythematosus patients. PLoS ONE. 2017;12(9): e0184738. https://doi.org/10.1371/journal.pone.0184738.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Miyagawa-Hayashino A, Yoshifuji H, Kitagori K, Ito S, Oku T, Hirayama Y, et al. Increase of MZB1 in B cells in systemic lupus erythematosus: proteomic analysis of biopsied lymph nodes. Arthritis Res Ther. 2018;20(1):13. https://doi.org/10.1186/s13075-018-1511-5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Salah A, Yoshifuji H, Ito S, Kitagori K, Kiso K, Yamada N, et al. High expression of Galectin-3 in patients with IgG4-related disease: a proteomic approach. Patholog Res Int. 2017;2017:9312142. https://doi.org/10.1155/2017/9312142.

Article  PubMed  PubMed Central  Google Scholar 

Sun R, Lyu M, Liang S, Ge W, Wang Y, Ding X, et al. A prostate cancer tissue specific spectral library for targeted proteomic analysis. Proteomics. 2022;22(7): e2100147. https://doi.org/10.1002/pmic.202100147.

Article  CAS  PubMed  Google Scholar 

Hood BL, Darfler MM, Guiel TG, Furusato B, Lucas DA, Ringeisen BR, et al. Proteomic analysis of formalin-fixed prostate cancer tissue. Mol Cell Proteomics. 2005;4(11):1741–53. https://doi.org/10.1074/mcp.M500102-MCP200.

Article  CAS  PubMed  Google Scholar 

Zhang Z, Grabchak M. Nonparametric estimation of Kullback-Leibler divergence. Neural Comput. 2014;26(11):2570–93. https://doi.org/10.1162/NECO_a_00646.

Article  PubMed  Google Scholar 

Maeda A, Scharenberg AM, Tsukada S, Bolen JB, Kinet JP, Kurosaki T. Paired immunoglobulin-like receptor B (PIR-B) inhibits BCR-induced activation of Syk and Btk by SHP-1. Oncogene. 1999;18(14):2291–7. https://doi.org/10.1038/sj.onc.1202552.

Article  CAS  PubMed  Google Scholar 

Engels N, Konig LM, Schulze W, Radtke D, Vanshylla K, Lutz J, et al. The immunoglobulin tail tyrosine motif upgrades memory-type BCRs by incorporating a Grb2-Btk signalling module. Nat Commun. 2014;5:5456. https://doi.org/10.1038/ncomms6456.

Article  CAS  PubMed  Google Scholar 

Almaghrbi H, Elkardawy R, Udhaya Kumar S, Kuttikrishnan S, Abunada T, Kashyap MK, et al. Analysis of signaling cascades from myeloma cells treated with pristimerin. Adv Protein Chem Struct Biol. 2023;134:147–74. https://doi.org/10.1016/bs.apcsb.2022.10.006.

Article  PubMed  Google Scholar 

Kizhakeyil A, Zaini NBM, Poh ZS, Wong BHS, Loh X, Ng AS, et al. DDX3X loss is an adverse prognostic marker in diffuse large B-cell lymphoma and is associated with chemoresistance in aggressive non-Hodgkin lymphoma subtypes. Mol Cancer. 2021;20(1):134. https://doi.org/10.1186/s12943-021-01437-0.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mo J, Liang H, Su C, Li P, Chen J, Zhang B. DDX3X: structure, physiologic functions and cancer. Mol Cancer. 2021;20(1):38. https://doi.org/10.1186/s12943-021-01325-7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dobashi A, Tsuyama N, Asaka R, Togashi Y, Ueda K, Sakata S, et al. Frequent BCOR aberrations in extranodal NK/T-cell lymphoma, nasal type. Genes Chromosomes Cancer. 2016;55(5):460–71. https://doi.org/10.1002/gcc.22348.

Article  CAS  PubMed  Google Scholar 

Zhang Y, Li C, Xue W, Zhang M, Li Z. Frequent mutations in natural killer/T cell lymphoma. Cell Physiol Biochem. 2018;49(1):1–16. https://doi.org/10.1159/000492835.

Article  CAS  PubMed  Google Scholar 

Ok CY, Xu-Monette ZY, Tzankov A, O’Malley DP, Montes-Moreno S, Visco C, et al. Prevalence and clinical implications of cyclin D1 expression in diffuse large B-cell lymphoma (DLBCL) treated with immunochemotherapy: a report from the International DLBCL Rituximab-CHOP Consortium Program. Cancer. 2014;120(12):1818–29. https://doi.org/10.1002/cncr.28664.

Article  CAS  PubMed  Google Scholar 

Ng SB, Yan J, Huang G, Selvarajan V, Tay JL, Lin B, et al. Dysregulated microRNAs affect pathways and targets of biologic relevance in nasal-type natural killer/T-cell lymphoma. Blood. 2011;118(18):4919–29. https://doi.org/10.1182/blood-2011-07-364224.

Comments (0)

No login
gif