Phosphodiesterase-5 (PDE-5) Inhibitors as Therapy for Cerebrovascular Dysfunction in Chronic Traumatic Brain Injury

Taylor CA, Bell JM, Breiding MJ, Xu L. Traumatic brain injury-related emergency department visits, hospitalizations, and deaths–United States, 2007 and 2013. MMWR Surveill Summ. 2017;66(9):1–18.

Article  Google Scholar 

Langlois JA, Rutland-Brown W, Wald MM. The epidemiology and impact of traumatic brain injury: a brief overview. J Head Trauma Rehabil. 2006;21:375–8.

Article  Google Scholar 

Narayan RK, Michel ME, Ansell BJ, et al. Clinical trials in head injury. J Neurotrauma. 2002;19:503–57.

Article  Google Scholar 

Siesjo BK. Basic mechanisms of traumatic brain damage. Ann Emerg Med. 1993;22:959–69.

Article  CAS  Google Scholar 

McIntosh TK. Novel pharmacologic therapies in the treatment of experimental brain injury: a review. J Neurotrauma. 1993;10:215–61.

Article  CAS  Google Scholar 

McIntosh TK, Juhler M, Wieloch T. Novel pharmacologic strategies in the treatment of experimental brain injury: 1998. J Neurotrauma. 1998;15:731–69.

Article  CAS  Google Scholar 

Doppenberg EMR, Bullock R. Clinical neuroprotective trials in severe traumatic brain injury: lessons from previous studies. J Neurotrauma. 1997;14:71–80.

Article  CAS  Google Scholar 

Diaz-Arrastia R, Kochanek PM, Bergold P, et al. Pharmacotherapy of traumatic brain injury: state of the science and the road forward report of the Department of Defense Neurotrauma Pharmacology Workgroup. J Neurotrauma. 2013.

Saatman KE, Duhaime AC, Bullock R, Maas AI, Valadka A, Manley GT. Classification of traumatic brain injury for targeted therapies. J Neurotrauma. 2008;25:719–38.

Article  Google Scholar 

Kenney K, Amyot F, Moore C, et al. Phosphodiesterase-5 inhibition potentiates cerebrovascular reactivity in chronic traumatic brain injury. Ann Clin Transl Neurol. 2018;5:418–28.

Article  CAS  Google Scholar 

Amyot F, Kenney K, Moore C, et al. Imaging of cerebrovascular function in chronic traumatic brain injury. J Neurotrauma. 2018;35:1116–23.

Article  Google Scholar 

Bartnik-Olson BL, Holshouser B, Wang H, et al. Impaired neurovascular unit function contributes to persistent symptoms after concussion: a pilot study. J Neurotrauma. 2014;31:1497–506.

Article  Google Scholar 

Tong KA, Ashwal S, Holshouser BA, et al. Diffuse axonal injury in children: clinical correlation with hemorrhagic lesions. Ann Neurol. 2004;56:36–50.

Article  Google Scholar 

Yuh EL, Mukherjee P, Lingsma HF, et al. Magnetic resonance imaging improves 3-month outcome prediction in mild traumatic brain injury. Ann Neurol. 2012;73:224–35.

Article  Google Scholar 

Tomlinson BE. Brain-stem lesions after head injury. J Clin Pathol Suppl (R Coll Pathol). 1970;4:154–65.

Article  CAS  Google Scholar 

Graham DI, Gennarelli TA, McIntosh TK. Trauma. In: Graham DI, McKenzie JE, editors. Greenfield’s neuropathology. 7th ed. London: Edward Arnold; 2002. p. 823–98.

Google Scholar 

Stein SC, Chen XH, Sinson GP, Smith DH. Intravascular coagulation: a major secondary insult in nonfatal traumatic brain injury. J Neurosurg. 2002;97:1373–7.

Article  Google Scholar 

Rodriguez-Baeza A, Reina-de la Torre F, Poca A, Marti M, Garnacho A. Morphological features in human cortical brain microvessels after head injury: a three-dimensional and immunocytochemical study. Anat Rec A Discov Mol Cell Evol Biol. 2003;273:583–93.

Oppenheimer DR. Microscopic lesions in the brain following head injury. J Neurol Neurosurg Psychiatry. 1968;31:299–306.

Article  CAS  Google Scholar 

Blumbergs PC, Scott G, Manavis J, Wainwright H, Simpson DA, McLean AJ. Topography of axonal injury as defined by amyloid precursor protein and the sector scoring method in mild and severe closed head injury. J Neurotrauma. 1995;12:565–72.

Article  CAS  Google Scholar 

McKee AC, Cantu RC, Nowinski CJ, et al. Chronic traumatic encephalopathy in athletes: progressive tauopathy after repetitive head injury. J Neuropathol Exp Neurol. 2009;68:709–35.

Article  Google Scholar 

McKee AC, Stein TD, Nowinski CJ, et al. The spectrum of disease in chronic traumatic encephalopathy. Brain. 2013;136:43–64.

Article  Google Scholar 

Goldstein LE, Fisher AM, Tagge CA, et al. Chronic traumatic encephalopathy in blast-exposed military veterans and a blast neurotrauma mouse model. Sci Transl Med. 2012;4:134ra60.

Tagge CA, Fisher AM, Minaeva OV, et al. Concussion, microvascular injury, and early tauopathy in young athletes after impact head injury and an impact concussion mouse model. Brain. 2018;141:422–58.

Article  Google Scholar 

Baranova AI, Wei EP, Ueda Y, Sholley MM, Kontos HA, Povlishock JT. Cerebral vascular responsiveness after experimental traumatic brain injury: the beneficial effects of delayed hypothermia combined with superoxide dismutase administration. J Neurosurg. 2008;109:502–9.

Article  CAS  Google Scholar 

Gao G, Oda Y, Wei EP, Povlishock JT. The adverse pial arteriolar and axonal consequences of traumatic brain injury complicated by hypoxia and their therapeutic modulation with hypothermia in rat. J Cereb Blood Flow Metab. 2010;30:628–37.

Article  Google Scholar 

Forbes ML, Hendrich KS, Kochanek PM, et al. Assessment of cerebral blood flow and CO2 reactivity after controlled cortical impact by perfusion magnetic resonance imaging using arterial spin-labeling in rats. J Cereb Blood Flow Metab. 1997;17:865–74.

Article  CAS  Google Scholar 

Raji CA, Tarzwell R, Pavel D, et al. Clinical utility of SPECT neuroimaging in the diagnosis and treatment of traumatic brain injury: a systematic review. PLoS ONE. 2014;9: e91088.

Article  Google Scholar 

Wei EP, Hamm RJ, Baranova AI, Povlishock JT. The long-term microvascular and behavioral consequences of experimental traumatic brain injury after hypothermic intervention. J Neurotrauma. 2009;26:527–37.

Article  CAS  Google Scholar 

Oda Y, Gao G, Wei EP, Povlishock JT. Combinational therapy using hypothermia and the immunophilin ligand FK506 to target altered pial arteriolar reactivity, axonal damage, and blood-brain barrier dysfunction after traumatic brain injury in rat. J Cereb Blood Flow Metab. 2011;31:1143–54.

Article  CAS  Google Scholar 

Park E, Bell JD, Siddiq IP, Baker AJ. An analysis of regional microvascular loss and recovery following two grades of fluid percussion trauma: a role for hypoxia-inducible factors in traumatic brain injury. J Cereb Blood Flow Metab. 2009;29:575–84.

Article  CAS  Google Scholar 

Kassner A, Roberts TP. Beyond perfusion: cerebral vascular reactivity and assessment of microvascular permeability. Top Magn Reson Imaging. 2004;15:58–65.

Article  Google Scholar 

Chassidim Y, Veksler R, Lublinsky S, Pell GS, Friedman A, Shelef I. Quantitative imaging assessment of blood-brain barrier permeability in humans. Fluids Barriers CNS. 2013;10:9.

Article  Google Scholar 

Kim J, Whyte J, Patel S, et al. Resting cerebral blood flow alterations in chronic traumatic brain injury: an arterial spin labeling perfusion FMRI study. J Neurotrauma. 2010;27:1399–411.

Article  Google Scholar 

Shlosberg D, Benifla M, Kaufer D, Friedman A. Blood-brain barrier breakdown as a therapeutic target in traumatic brain injury. Nat Rev Neurol. 2010;6:393–403.

Article  CAS  Google Scholar 

Li L, Jiang Q, Zhang L, et al. Angiogenesis and improved cerebral blood flow in the ischemic boundary area detected by MRI after administration of sildenafil to rats with embolic stroke. Brain Res. 2007;1132:185–92.

Article  CAS  Google Scholar 

Wu H, Jiang H, Lu D, et al. Induction of angiogenesis and modulation of vascular endothelial growth factor receptor-2 by simvastatin after traumatic brain injury. Neurosurgery. 2011;68:1363–71.

Article  Google Scholar 

Villapol S, Yaszemski AK, Logan TT, Sanchez-Lemus E, Saavedra JM, Symes AJ. Candesartan, an angiotensin II AT(1)-receptor blocker and PPAR-gamma agonist, reduces lesion volume and improves motor and memory function after traumatic brain injury in mice. Neuropsychopharmacology. 2012;37:2817–29.

Article  CAS  Google Scholar 

Villapol S, Balarezo MG, Affram K, Saavedra JM, Symes AJ. Neurorestoration after traumatic brain injury through angiotensin II receptor blockage. Brain. 2015;138:3299–315.

Article  Google Scholar 

Zhang F, Signore AP, Zhou Z, Wang S, Cao G, Chen J. Erythropoietin protects CA1 neurons against global cerebral ischemia in rat: potential signaling mechanisms. J Neurosci Res. 2006;83:1241–51.

Article  CAS  Google Scholar 

Pereira AC, Huddleston DE, Brickman AM, et al. An in vivo correlate of exercise-induced neurogenesis in the adult dentate gyrus. Proc Natl Acad Sci U S A. 2007;104:5638–43.

Article  CAS  Google Scholar 

Scrimgeour AG, Condlin ML. Nutritional treatment for traumatic brain injury. J Neurotrauma. 2014;31:989–99.

Article  Google Scholar 

Hasadsri L, Wang BH, Lee JV, et al. Omega-3 fatty acids as a putative treatment for traumatic brain injury. J Neurotrauma. 2013;30:897–906.

Article  Google Scholar 

Zlokovic BV. Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders. Nat Rev Neurosci. 2011;12:723–38.

Article  CAS  Google Scholar 

Ramos-Cejudo J, Wisniewski T, Marmar C, et al. Traumatic brain injury and Alzheimer’s disease: the cerebrovascular link. EBioMedicine. 2018;28:21–30.

Article  Google Scholar 

Wu, et al. “Persistent CO2 reactivity deficits are associated with neurological dysfunction up to one year after repetitive mild closed head injury in adolescent mice.” J Cereb Blood Flow Metab. 2021;41(12):3260–3272.

Chan, et al. Cerebrovascular responses to Ox-CO2 exchange ratio under brief breath-hold challenge in patients with chronic mild TBI. J Neurotrauma. 2021;38(20):2851–61.

Article  Google Scholar 

Rodriguez UA, et al. Effects of mild blast traumatic brain injury on cerebral vascular, histopathological and behavioral outcomes in rats. J Neurotrauma. 2018;35(2):375–92.

Article  Google Scholar 

Dodd AB. Persistent alterations in CVR in response to hypercapnia following pediatric mild TBI. J Cereb Blood Flow Metab. 2020;40(12):2491–504.

Article  CAS  Google Scholar 

Champagne AA, et al. Multi-parametric analysis reveals metabolic and vascular effects driving differences in BOLD-based CVR associated with a history of sport concussion. Brain Inj. 2019;33(11):1479–89.

Article  Google Scholar 

Wei EP, Dietrich WD, Povlishock JT, Navari RM, Kontos HA. Functional, morphological, and metabolic abnormalities of the cerebral microcirculation after concussive brain injury in cats. Circ Res. 1980;46:37–47.

Article 

Comments (0)

No login
gif