Dewan MC, Rattani A, Gupta S, Baticulon RE, Hung Y-C, Punchak M, et al. Estimating the global incidence of traumatic brain injury. J Neurosurg. 2019;130:1080–97.
Magnuson J, Leonessa F, Ling GSF. Neuropathology of explosive blast traumatic brain injury. Curr Neurol Neurosci [Internet]. 2012;12:570--579. Available from: https://link.springer.com/article/10.1007/s11910-012-0303-6.
Bogner J, Corrigan JD, Yi H, Singichetti B, Manchester K, Huang L, et al. Lifetime history of traumatic brain injury and behavioral health problems in a population-based sample. J Head Trauma Rehab. 2020;35:E43-50.
Corrigan JD, Hammond FM. Traumatic brain injury as a chronic health condition. Arch Phys Med Rehab. 2013;94:1199–201.
Ma VY, Chan L, Carruthers KJ. Incidence, prevalence, costs, and impact on disability of common conditions requiring rehabilitation in the United States: stroke, spinal cord injury, traumatic brain injury, multiple sclerosis, osteoarthritis, rheumatoid arthritis, limb loss, and back pain. Arch Phys Med Rehab. 2014;95:986-995.e1.
Haarbauer-Krupa J, Pugh MJ, Prager EM, Harmon N, Wolfe J, Yaffe K. Epidemiology of chronic effects of traumatic brain injury. J Neurotraum. 2021;38:3235–47.
Gardner RC, Burke JF, Nettiksimmons J, Kaup A, Barnes DE, Yaffe K. Dementia risk after traumatic brain injury vs nonbrain trauma: the role of age and severity. Jama Neurol. 2014;71:1490–7.
PubMed PubMed Central Google Scholar
Gardner RC, Yaffe K. Epidemiology of mild traumatic brain injury and neurodegenerative disease. Mol Cell Neurosci. 2015;66:75–80.
CAS PubMed PubMed Central Google Scholar
Masel BE, DeWitt DS. Traumatic brain injury: a disease process, not an event. J Neurotraum [Internet]. 2010;27:1529--1540. Available from: https://www.liebertpub.com/doi/full/10.1089/neu.2010.1358.
Gilbert M, Snyder C, Corcoran C, Norton MC, Lyketsos CG, Tschanz JT. The association of traumatic brain injury with rate of progression of cognitive and functional impairment in a population-based cohort of Alzheimer’s disease: the Cache County Dementia Progression Study*. Int Psychogeriatr. 2014;26:1593–601.
PubMed PubMed Central Google Scholar
Santopietro J, Yeomans JA, Niemeier JP, White JK, Coughlin CM. Traumatic brain injury and behavioral health: the state of treatment and policy. N C Med J. 2015;76:96–100.
Barker S, Paul BD, Pieper AA. Increased risk of aging-related neurodegenerative disease after traumatic brain injury. Biomedicines. 2023;11:1154.
CAS PubMed PubMed Central Google Scholar
Marklund N, Bellander B-M, Godbolt AK, Levin H, McCrory P, Thelin EP. Treatments and rehabilitation in the acute and chronic state of traumatic brain injury. J Intern Med. 2019;285:608–23.
CAS PubMed PubMed Central Google Scholar
Vella MA, Crandall ML, Patel MB. Acute management of traumatic brain injury. Surg Clin N Am. 2017;97:1015–30.
Meyfroidt G, Bouzat P, Casaer MP, Chesnut R, Hamada SR, Helbok R, et al. Management of moderate to severe traumatic brain injury: an update for the intensivist. Intensive Care Med. 2022;48:649–66.
Redell JB, Maynard ME, Underwood EL, Vita SM, Dash PK, Kobori N. Traumatic brain injury and hippocampal neurogenesis: functional implications. Exp Neurol. 2020;331: 113372.
PubMed PubMed Central Google Scholar
Jessberger S, Clark RE, Broadbent NJ, Clemenson GD, Consiglio A, Lie DC, et al. Dentate gyrus-specific knockdown of adult neurogenesis impairs spatial and object recognition memory in adult rats. Learn Memory. 2009;16:147–54.
Imayoshi I, Sakamoto M, Ohtsuka T, Takao K, Miyakawa T, Yamaguchi M, et al. Roles of continuous neurogenesis in the structural and functional integrity of the adult forebrain. Nat Neurosci. 2008;11:1153–61.
Deng W, Aimone JB, Gage FH. New neurons and new memories: how does adult hippocampal neurogenesis affect learning and memory? Nat Rev Neurosci. 2010;11:339–50.
CAS PubMed PubMed Central Google Scholar
Dayer AG, Ford AA, Cleaver KM, Yassaee M, Cameron HA. Short-term and long-term survival of new neurons in the rat dentate gyrus. J Comp Neurol. 2003;460:563–72.
Pieper AA, Xie S, Capota E, Estill S, i Jo, Zhong J, et al. Discovery of a pro-neurogenic, neuroprotective chemical. Cell [Internet]. 2010;142:39--51. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2930815/.
Moreno-Jiménez EP, Flor-García M, Terreros-Roncal J, Rábano A, Cafini F, Pallas-Bazarra N, et al. Adult hippocampal neurogenesis is abundant in neurologically healthy subjects and drops sharply in patients with Alzheimer’s disease. Nat Med. 2019;25:554–60.
Dash PK, Mach SA, Moore AN. Enhanced neurogenesis in the rodent hippocampus following traumatic brain injury. J Neurosci Res. 2001;63:313–9.
Blaya MO, Bramlett HM, Naidoo J, Pieper AA, Dietrich WD. Neuroprotective efficacy of a proneurogenic compound after traumatic brain injury. J Neurotraum. 2014;31:476–86.
Zhang Z, Ishrat S, O’Bryan M, Klein B, Saraswati M, Robertson C, et al. Pediatric traumatic brain injury causes long-term deficits in adult hippocampal neurogenesis and cognition. J Neurotraum. 2020;37:1656–67.
Atkins CM, Truettner JS, Lotocki G, Sanchez-Molano J, Kang Y, Alonso OF, et al. Post-traumatic seizure susceptibility is attenuated by hypothermia therapy. Eur J Neurosci. 2010;32:1912–20.
PubMed PubMed Central Google Scholar
Blaiss CA, Yu T-S, Zhang G, Chen J, Dimchev G, Parada LF, et al. Temporally specified genetic ablation of neurogenesis impairs cognitive recovery after traumatic brain injury. J Neurosci. 2011;31:4906–16.
CAS PubMed PubMed Central Google Scholar
Scharfman HE, Hen R. Is more neurogenesis always better? Science. 2007;315:336–8.
CAS PubMed PubMed Central Google Scholar
MacMillan KS, Naidoo J, Liang J, Melito L, Williams NS, Morlock L, et al. Development of proneurogenic, neuroprotective small molecules. J Am Chem Soc. 2011;133:1428–37.
CAS PubMed PubMed Central Google Scholar
Pieper AA, McKnight SL, Ready JM. P7C3 and an unbiased approach to drug discovery for neurodegenerative diseases. Chem Soc Rev [Internet]. 2014;43:6716--6726. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4237066/.
Pieper AA, Wu X, Han TW, Estill SJ, Dang Q, Wu LC, et al. The neuronal PAS domain protein 3 transcription factor controls FGF-mediated adult hippocampal neurogenesis in mice. Proc National Acad Sci. 2005;102:14052–7.
Stanco A, Pla R, Vogt D, Chen Y, Mandal S, Walker J, et al. NPAS1 represses the generation of specific subtypes of cortical interneurons. Neuron. 2014;84:940–53.
CAS PubMed PubMed Central Google Scholar
Pickard BS, Pieper AA, Porteous DJ, Blackwood DH, Muir WJ. The NPAS3 gene—emerging evidence for a role in psychiatric illness. Ann Med. 2006;38:439–48.
Michaelson JJ, Shin M-K, Koh J-Y, Brueggeman L, Zhang A, Katzman A, et al. Neuronal PAS domain proteins 1 and 3 are master regulators of neuropsychiatric risk genes. Biol Psychiat. 2017;82:213–23.
Naidoo J, Bemben CJ, Allwein SR, Liang J, Pieper AA, Ready JM. Development of a scalable synthesis of P7C3-A20, a potent neuroprotective agent. Tetrahedron Lett. 2013;54:4429–31.
Naidoo J, Jesus-Cortes HD, Huntington P, Estill S, Morlock LK, Starwalt R, et al. Discovery of a neuroprotective chemical, (S)-N-(3-(3,6-dibromo-9H-carbazol-9-yl)-2-fluoropropyl)-6-methoxypyridin-2-amine [(−)-P7C3-S243], with improved druglike properties. J Med Chem. 2014;57:3746–54.
CAS PubMed PubMed Central Google Scholar
Bauman MD, Schumann CM, Carlson EL, Taylor SL, Vázquez-Rosa E, Cintrón-Pérez CJ, et al. Neuroprotective efficacy of P7C3 compounds in primate hippocampus. Transl Psychiat. 2018;8:202.
Pieper AA, McKnight SL. Benefits of enhancing nicotinamide adenine dinucleotide levels in damaged or diseased nerve cells. Cold Spring Harb Sym. 2018;83:207–17.
Satchell MA, Zhang X, Kochanek PM, Dixon CE, Jenkins LW, Melick J, et al. A dual role for poly-ADP-ribosylation in spatial memory acquisition after traumatic brain injury in mice involving NAD+ depletion and ribosylation of 14-3-3γ. J Neurochem. 2003;85:697–708.
Clark RSB, Vagni VA, Nathaniel PD, Jenkins LW, Dixon CE, Szab C. Local administration of the poly(ADP-ribose) polymerase inhibitor INO-1001 prevents NAD depletion and improves water maze performance after traumatic brain injury in mice. J Neurotraum. 2007;24:1399–405.
Blaya MO, Wasserman JM, Pieper AA, Sick TJ, Bramlett HM, Dietrich WD. Neurotherapeutic capacity of P7C3 agents for the treatment of traumatic brain injury. Neuropharmacology. 2019;145:268–82.
Stovell MG, Mada MO, Helmy A, Carpenter TA, Thelin EP, Yan J-L, et al. The effect of succinate on brain NADH/NAD+ redox state and high energy phosphate metabolism in acute traumatic brain injury. Sci Rep-uk. 2018;8:11140.
Yin TC, Voorhees JR, Genova RM, Davis KC, Madison AM, Britt JK, et al. Acute axonal degeneration drives development of cognitive, motor, and visual deficits after blast-mediated traumatic brain injury in mice. Eneuro. 2016;3:ENEURO.0220–16.2016.
Shin M-K, Vázquez-Rosa E, Koh Y, Dhar M, Chaubey K, Cintrón-Pérez CJ, et al. Reducing acetylated tau is neuroprotective in brain injury. Cell. 2021;184:2715-2732.e23.
CAS PubMed PubMed Central Google Scholar
Henninger N, Bouley J, Sikoglu EM, An J, Moore CM, King JA, et al. Attenuated traumatic axonal injury and improved functional outcome after traumatic brain injury in mice lacking Sarm1. Brain. 2016;139:1094–105.
PubMed PubMed Central Google Scholar
Loris ZB, Pieper AA, Dietrich WD. The neuroprotective compound P7C3-A20 promotes neurogenesis and improves cognitive function after ischemic stroke. Exp Neurol. 2017;290:63–73.
Wang G, Han T, Nijhawan D, Theodoropoulos P, Naidoo J, Yadavalli S, et al. P7C3 Neuroprotective chemicals function by activating the rate-limiting enzyme in NAD salvage. Cell. 2014;158:1324–34.
CAS PubMed PubMed Central Google Scholar
Landry T, Huang H. Mini review: the relationship between energy status and adult hippocampal neurogenesis. Neurosci Lett. 2021;765: 136261.
CAS PubMed PubMed Central Google Scholar
Hisahara S, Chiba S, Matsumoto H, Tanno M, Yagi H, Shimohama S, et al. Histone deacetylase SIRT1 modulates neuronal differentiation by its nuclear translocation. Proc Natl Acad Sci. 2008;105:15599–604.
Comments (0)