EBV Reactivation and Lymphomagenesis: More Questions than Answers

•• Tan H, Gong Y, Liu Y, Long J, Luo Q, Faleti OD, Lyu X. Advancing therapeutic strategies for Epstein-Barr virus-associated malignancies through lytic reactivation. Biomed Pharmacother. 2023;164:114916. https://doi.org/10.1016/j.biopha.2023.114916. This article has the most recent and comprehensive therapeutic strategies for EBV malignancies.

Article  CAS  PubMed  Google Scholar 

Wagner-Johnston ND, Ambinder RF. Epstein-Barr virus-related lymphoproliferative disorders. Curr Hematol Malig Rep. 2007;2(4):249–54. https://doi.org/10.1007/s11899-007-0034-y.

Article  PubMed  Google Scholar 

• Kerr JR. Epstein-Barr virus (EBV) reactivation and therapeutic inhibitors. J Clin Pathol. 2019;72(10):651–8. https://doi.org/10.1136/jclinpath-2019-205822. This article also nicely summarizes the most recent and comprehensive therapeutic strategies for EBV reactivation.

Article  CAS  PubMed  Google Scholar 

•• Taylor GS, Long HM, Brooks JM, Rickinson AB, Hislop AD. The immunology of Epstein-Barr virus-induced disease. Annu Rev Immunol. 2015;33:787–821. https://doi.org/10.1146/annurev-immunol-032414-112326. This article summaries the pathophysiology of EBV reactivation and how it can affect both immunocompromised and immunocompetent hosts.

Article  CAS  PubMed  Google Scholar 

Prockop SE, Vatsayan A. Epstein-Barr virus lymphoproliferative disease after solid organ transplantation. Cytotherapy. 2017;19(11):1270–83. https://doi.org/10.1016/j.jcyt.2017.08.010.

Article  CAS  PubMed  Google Scholar 

Ma SD, Hegde S, Young KH, Sullivan R, Rajesh D, Zhou Y, Jankowska-Gan E, Burlingham WJ, Sun X, Gulley ML, Tang W, Gumperz JE, Kenney SC. A new model of Epstein-Barr virus infection reveals an important role for early lytic viral protein expression in the development of lymphomas. J Virol. 2011;85(1):165–77. https://doi.org/10.1128/JVI.01512-10.

Article  CAS  PubMed  Google Scholar 

Kuppers R. The biology of Hodgkin’s lymphoma. Nat Rev Cancer. 2009;9:15–27.

Article  PubMed  Google Scholar 

Murata T, Sugimoto A, Inagaki T, Yanagi Y, Watanabe T, Sato Y, Kimura H. Molecular basis of Epstein–Barr virus latency establishment and lytic reactivation. Viruses. 2021;13(12):2344. https://doi.org/10.3390/v13122344.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu L, Ehlin-Henriksson B, Zhou X, Zhu H, Ernberg I, Kis LL, Klein G. Epstein-Barr virus (EBV) provides survival factors to EBV+ diffuse large B-cell lymphoma (DLBCL) lines and modulates cytokine induced specific chemotaxis in EBV+ DLBCL. Immunology. 2017;152(4):562–73. https://doi.org/10.1111/imm.12792.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mackrides N, Campuzano-Zuluaga G, Maque-Acosta Y, Moul A, Hijazi N, Ikpatt FO, Levy R, Verdun RE, Kunkalla K, Natkunam Y, Lossos IS, Vega F, Chapman J. Epstein-Barr virus-positive follicular lymphoma. Mod Pathol. 2017;30(4):519–29. https://doi.org/10.1038/modpathol.2016.214.

Article  CAS  PubMed  Google Scholar 

Mackrides N, Chapman J, Larson MC, Ramos JC, Toomey N, Lin P, Maurer MJ, Rafaelle M, Tan Y, Ikpatt O, Syrbu S, Ansell SM, Habermann TM, Link BK, Feldman AL, Lossos IS, Cerhan JR, Vega F. Prevalence, clinical characteristics and prognosis of EBV-positive follicular lymphoma. Am J Hematol. 2019;94(2):E62–4. https://doi.org/10.1002/ajh.25357.

Article  PubMed  Google Scholar 

Mesri EA, Feitelson MA, Munger K. Human viral oncogenesis: a cancer hallmarks analysis. Cell Host Microbe. 2014;15(3):266–82. https://doi.org/10.1016/j.chom.2014.02.011.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cesarman E, Mesri EA. Kaposi sarcoma-associated herpesvirus and other viruses in human lymphomagenesis. Curr Topics Microbiol Immunol. 2007;312:263–87.

CAS  Google Scholar 

Arvey A, Tempera I, Tsai K, Chen HS, Tikhmyanova N, Klichinsky M, Leslie C, Lieberman PM. An atlas of the Epstein-Barr virus transcriptome and epigenome reveals host-virus regulatory interactions. Cell Host Microbe. 2012;12:233–45.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kimura H. EBV in T-/NK-Cell Tumorigenesis. Adv Exp Med Biol. 2018;1045:459–75. https://doi.org/10.1007/978-981-10-7230-7_21.

Article  CAS  PubMed  Google Scholar 

Schmitz R, Young RM, Ceribelli M, Jhavar S, Xiao W, Zhang M, Wright G, Shaffer AL, Hodson DJ, Buras E, Liu X. Burkitt lymphoma pathogenesis and therapeutic targets from structural and functional genomics. Nature. 2012;490(7418):116–20. https://doi.org/10.1038/nature11378.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li J, Maruyama T, Zhang P, Konkel JE, Hoffman V, Zamarron B, Chen W. Mutation of inhibitory helix-loop-helix protein Id3 causes γδ T-cell lymphoma in mice. Blood. 2010;116(25):5615–21. https://doi.org/10.1182/blood-2010-03-274506.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Peng RJ, Han BW, Cai QQ, Zuo XY, Xia T, Chen JR, Feng LN, Lim JQ, Chen SW, Zeng MS, Guo YM. Genomic and transcriptomic landscapes of Epstein-Barr virus in extranodal natural killer T-cell lymphoma. Leukemia. 2019;33(6):1451–62. https://doi.org/10.1038/s41375-018-0324-5.

Article  PubMed  Google Scholar 

Dierickx D, Habermann TM. Post-transplantation lymphoproliferative disorders in adults. N Engl J Med. 2018;378(6):549–62.

Article  CAS  PubMed  Google Scholar 

Montanari F, Orjuela-Grimm M. Joining efforts for PTLD: lessons learned from comparing the approach and treatment strategies across the pediatric and adult age spectra. Curr Hematol Malig Rep. 2021;16(1):52–60.

Article  PubMed  PubMed Central  Google Scholar 

Atallah-Yunes SA, Salman O, Robertson MJ. Post-transplant lymphoproliferative disorder: update on treatment and novel therapies. Br J Haematol. 2023;201(3):383–95. https://doi.org/10.1111/bjh.18763.

Article  CAS  PubMed  Google Scholar 

Luskin MR, Heil DS, Tan KS, Choi S, Stadtmauer EA, Schuster SJ, et al. The impact of EBV status on characteristics and outcomes of posttransplantation lymphoproliferative disorder. Am J Transplant. 2015;15(10):2665–73.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dharnidharka VR. Comprehensive review of post-organ transplant hematologic cancers. Am J Transplant. 2018;18(3):537–49.

Article  PubMed  Google Scholar 

Ford M, Orlando E, Jin Z, Lipsky AH, Sawas A, Pro B, Amengual JE. Treatment modalities effect on outcome in post-transplant lymphoproliferative disorder. Blood. 2022;140(Supplement 1):3794–5. https://doi.org/10.1182/blood-2022-163813.

Article  Google Scholar 

Carbone A, et al. EBV-associated lymphoproliferative disorders: classification and treatment. Oncologist. 2008;13:577–85.

Article  PubMed  Google Scholar 

Raphael M, Borisch B, Jaffe ES. Lymphomas associated with infection by the human immune deficiency virus (HIV). In: Jaffe ES, Harris NL, Stein H, et al., editors. World Health Organization Classification of Tumours, Pathology and Genetics of Tumours of Haematopoietic and Lymphoid Tissues. Lyon, France: IARC Press; 2001. p. 260–3.

Google Scholar 

Meerbach A, Gruhn B, Egerer R, Reischl U, Zintl F, Wutzler P. Semiquantitative PCR analysis of Epstein-Barr virus DNA in clinical samples of patients with EBV-associated diseases. J Med Virol. 2001 Oct;65(2):348–57. https://doi.org/10.1002/jmv.2040.

Article  CAS  PubMed  Google Scholar 

Reshef R, Luskin MR, Kamoun M, Vardhanabhuti S, Tomaszewski JE, Stadtmauer EA, Porter DL, Heitjan DF, Tsai DE. Association of HLA polymorphisms with post-transplant lymphoproliferative disorder in solid-organ transplant recipients. Am J Transplant. 2011;11(4):817–25. https://doi.org/10.1111/j.1600-6143.2011.03454.x.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zaffiri L, Chambers ET. Screening and management of PTLD. Transplantation. 2023:10–97. https://doi.org/10.1097/TP.0000000000004577.

Keam SJ. Tabelecleucel: first approval. Mol Diagn Ther. 2023;27(3):425–31. https://doi.org/10.1007/s40291-023-00648-z.

Article  CAS  PubMed  Google Scholar 

Porcu P, Haverkos B, Alpdogan O, Baiocchi R, Brammer J, Feldman T, Capra M, Brem E, Scheinberg P, Pereira J, Shune L, Katkov A, McRae R, Rojkjaer L, Royston I, Faller D. Oral nanatinostat (Nstat) and valganciclovir (VGCV) in patients with recurrent Epstein-Barr virus (EBV)-positive lymphomas: initial phase 2 results. Blood. 2020;136(Supplement 1):7–8. https://doi.org/10.1182/blood-2020-140843.

Article  Google Scholar 

Viracta Therapeutics, Inc. An open-label, phase 2 trial of nanatinostat in combination with valganciclovir in patients with Epstein-Barr virus-positive (EBV+) relapsed/refractory lymphomas (NAVAL-1). Accessed 20 June 2023. clinicaltrials.gov/ct2/show/NCT05011058.

Burns DM, Crawford DH. Epstein-Barr virus-specific cytotoxic T-lymphocytes for adoptive immunotherapy of post-transplant lymphoproliferative disease. Blood Rev. 2004;18(3):193–209.

Article  PubMed  Google Scholar 

Al-Mansour Z, Nelson BP, Evens AM. Post-transplant lymphoproliferative disease (PTLD): risk factors, diagnosis, and current treatment strategies. Curr Hematol Malig Rep. 2013 Sep;8(3):173–83. https://doi.org/10.1007/s11899-013-0162-5.

Article  PubMed  PubMed Central  Google Scholar 

Lv K, Yin T, Yu M, Chen Z, Zhou Y, Li F. Treatment advances in EBV related lymphoproliferative diseases. Front Oncol. 2022;19(12):838817. https://doi.org/10.3389/fonc.2022.838817.

Article  CAS  Google Scholar 

• Heslop HE, Sharma S, Rooney CM. Adoptive T-cell therapy for Epstein-Barr virus-related lymphomas. J Clin Oncol. 2021;39(5):514–24. https://doi.org/10.1200/JCO.20.01709. This article has the most up-to-date information on CTLs and future directions of CTls in lymphoma treatment.

Article 

Comments (0)

No login
gif