Ngeow J, Eng C (2016) Precision medicine in heritable cancer: when somatic tumour testing and germline mutations meet. NPJ Genom Med 1:15006. https://doi.org/10.1038/npjgenmed.2015.6
Article PubMed PubMed Central Google Scholar
Garber JE, Offit K (2005) Hereditary cancer predisposition syndromes. J Clin Oncol 23(2):276–292. https://doi.org/10.1200/JCO.2005.10.042
Whitworth J, Smith PS, Martin JE et al (2018) Comprehensive cancer-predisposition gene testing in an adult multiple primary tumor series shows a broad range of deleterious variants and atypical tumor phenotypes. Am J Hum Genet 103(1):3–18. https://doi.org/10.1016/j.ajhg.2018.04.013
Article CAS PubMed PubMed Central Google Scholar
Cybulski C, Nazarali S, Narod SA (2014) Multiple primary cancers as a guide to heritability. Int J Cancer 135(8):1756–1763. https://doi.org/10.1002/ijc.28988
Article CAS PubMed Google Scholar
Whitworth J, Hoffman J, Chapman C et al (2015) A clinical and genetic analysis of multiple primary cancer referrals to genetics services. Eur J Hum Genet 23(5):581–587. https://doi.org/10.1038/ejhg.2014.157
Article CAS PubMed Google Scholar
Chan GHJ, Ong PY, Low JJH et al (2018) Clinical genetic testing outcome with multi-gene panel in Asian patients with multiple primary cancers. Oncotarget 9(55):30649–30660. https://doi.org/10.18632/oncotarget.25769
Article PubMed PubMed Central Google Scholar
Bychkovsky BL, Lo MT, Yussuf A et al (2022) Prevalence and spectrum of pathogenic variants among patients with multiple primary cancers evaluated by clinical characteristics. Cancer 128(6):1275–1283. https://doi.org/10.1002/cncr.34056
Article CAS PubMed Google Scholar
Hou YC, Neidich JA, Duncavage EJ, Spencer DH, Schroeder MC (2022) Clinical whole-genome sequencing in cancer diagnosis. Hum Mutat 43(11):1519–1530. https://doi.org/10.1002/humu.24381
Article CAS PubMed Google Scholar
Xiao W, Ren L, Chen Z et al (2021) Toward best practice in cancer mutation detection with whole-genome and whole-exome sequencing. Nat Biotechnol 39(9):1141–1150. https://doi.org/10.1038/s41587-021-00994-5
Article CAS PubMed PubMed Central Google Scholar
Consortium ITP-CAoWG (2020) Pan-cancer analysis of whole genomes. Nature 578(7793):82–93. https://doi.org/10.1038/s41586-020-1969-6
Lionel AC, Costain G, Monfared N et al (2018) Improved diagnostic yield compared with targeted gene sequencing panels suggests a role for whole-genome sequencing as a first-tier genetic test. Genet Med 20(4):435–443. https://doi.org/10.1038/gim.2017.119
Article CAS PubMed Google Scholar
Neu MB, Bowling KM, Cooper GM (2019) Clinical utility of genomic sequencing. Curr Opin Pediatr 31(6):732–738. https://doi.org/10.1097/MOP.0000000000000815
Article PubMed PubMed Central Google Scholar
Parsons DW, Roy A, Yang Y et al (2016) Diagnostic yield of clinical tumor and germline whole-exome sequencing for children with solid tumors. JAMA Oncol 2(5):616–624. https://doi.org/10.1001/jamaoncol.2015.5699
Article PubMed PubMed Central Google Scholar
Trost B, Walker S, Wang Z et al (2018) A comprehensive workflow for read depth-based identification of copy-number variation from whole-genome sequence data. Am J Hum Genet 102(1):142–155. https://doi.org/10.1016/j.ajhg.2017.12.007
Article CAS PubMed PubMed Central Google Scholar
Ding Q, Somerville C, Manshaei R et al (2022) SCIP: software for efficient clinical interpretation of copy number variants detected by whole-genome sequencing. Hum Genet. https://doi.org/10.1007/s00439-022-02494-1
Article PubMed PubMed Central Google Scholar
Te Paske I, Mensenkamp AR, Neveling K et al (2022) Noncoding aberrations in mismatch repair genes underlie a substantial part of the missing heritability in lynch syndrome. Gastroenterology 163(6):1691–1694. https://doi.org/10.1053/j.gastro.2022.08.041
Richards S, Aziz N, Bale S et al (2015) Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American college of medical genetics and genomics and the association for molecular pathology. Genet Med 17(5):405–424. https://doi.org/10.1038/gim.2015.30
Article PubMed PubMed Central Google Scholar
Riggs ER, Andersen EF, Cherry AM et al (2020) Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med 22(2):245–257. https://doi.org/10.1038/s41436-019-0686-8
Casalino S, Frangione E, Chung M et al (2022) Genome screening, reporting, and genetic counseling for healthy populations. Hum Genet. https://doi.org/10.1007/s00439-022-02480-7
Article PubMed PubMed Central Google Scholar
Shlien A, Malkin D (2009) Copy number variations and cancer. Genome Med 1(6):62. https://doi.org/10.1186/gm62
Article CAS PubMed PubMed Central Google Scholar
Byrjalsen A, Hansen TVO, Stoltze UK et al (2020) Nationwide germline whole genome sequencing of 198 consecutive pediatric cancer patients reveals a high incidence of cancer prone syndromes. PLoS Genet 16(12):e1009231. https://doi.org/10.1371/journal.pgen.1009231
Article CAS PubMed PubMed Central Google Scholar
Langenberg KPS, Meister MT, Bakhuizen JJ et al (2022) Implementation of paediatric precision oncology into clinical practice: the individualized therapies for children with cancer program “iTHER.” Eur J Cancer 175:311–325. https://doi.org/10.1016/j.ejca.2022.09.001
Article PubMed PubMed Central Google Scholar
Wagener R, Taeubner J, Walter C et al (2021) Comprehensive germline-genomic and clinical profiling in 160 unselected children and adolescents with cancer. Eur J Hum Genet 29(8):1301–1311. https://doi.org/10.1038/s41431-021-00878-x
Article CAS PubMed PubMed Central Google Scholar
Schneider BP, Stout LA, Philips S et al (2020) Implications of incidental germline findings identified in the context of clinical whole exome sequencing for guiding cancer therapy. JCO Precis Oncol 4:1109–1121. https://doi.org/10.1200/PO.19.00354
Chang YS, Chao DS, Chung CC et al (2022) Cancer carrier screening in the general population using whole-genome sequencing. Cancer Med. https://doi.org/10.1002/cam4.5034
Article PubMed PubMed Central Google Scholar
Loveday C, Garrett A, Law P et al (2022) Analysis of rare disruptive germline mutations in 2135 enriched BRCA-negative breast cancers excludes additional high-impact susceptibility genes. Ann Oncol 33(12):1318–1327. https://doi.org/10.1016/j.annonc.2022.09.152
Article CAS PubMed Google Scholar
Nones K, Johnson J, Newell F et al (2019) Whole-genome sequencing reveals clinically relevant insights into the aetiology of familial breast cancers. Ann Oncol 30(7):1071–1079. https://doi.org/10.1093/annonc/mdz132
Article CAS PubMed PubMed Central Google Scholar
Trotman J, Armstrong R, Firth H et al (2022) The NHS England 100,000 Genomes project: feasibility and utility of centralised genome sequencing for children with cancer. Br J Cancer 127(1):137–144. https://doi.org/10.1038/s41416-022-01788-5
Article CAS PubMed PubMed Central Google Scholar
Mandelker D, Ceyhan-Birsoy O (2020) Evolving significance of tumor-normal sequencing in cancer care. Trends Cancer 6(1):31–39. https://doi.org/10.1016/j.trecan.2019.11.006
Article CAS PubMed Google Scholar
Pasmans CTB, Tops BBJ, Steeghs EMP et al (2021) Micro-costing diagnostics in oncology: from single-gene testing to whole- genome sequencing. Expert Rev Pharmacoecon Outcomes Res 21(3):413–414. https://doi.org/10.1080/14737167.2021.1917385
Costain G, Cohn RD, Scherer SW, Marshall CR (2021) Genome sequencing as a diagnostic test. CMAJ 193(42):E1626–E1629. https://doi.org/10.1503/cmaj.210549
Comments (0)