Asem MS, Buechler S, Wates RB et al (2016) WNT5A signaling in cancer. Cancers (Basel) 8:79. https://doi.org/10.3390/cancers8090079
Article CAS PubMed Google Scholar
Bernasconi P, Borsani O (2019) Targeting leukemia stem cell-niche dynamics: a new challenge in AML treatment. J Oncol 2019:8323592. https://doi.org/10.1155/2019/8323592
Article CAS PubMed PubMed Central Google Scholar
Braicu C, Buse M, Busuioc C et al (2019) A comprehensive review on MAPK: a promising therapeutic target in cancer. Cancers (Basel) 11:1618. https://doi.org/10.3390/cancers11101618
Article CAS PubMed Google Scholar
Canesin G, Evans-Axelsson S, Hellsten R et al (2017) Treatment with the WNT5A-mimicking peptide Foxy-5 effectively reduces the metastatic spread of WNT5A-low prostate cancer cells in an orthotopic mouse model. PLoS ONE 12:e0184418. https://doi.org/10.1371/journal.pone.0184418
Article CAS PubMed PubMed Central Google Scholar
Cerami E, Gao J, Dogrusoz U et al (2012) The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2:401–404. https://doi.org/10.1158/2159-8290.CD-12-0095
Corrigan PM, Dobbin E, Freeburn RW, Wheadon H (2009) Patterns of Wnt/Fzd/LRP gene expression during embryonic hematopoiesis. Stem Cells Dev 18:759–772. https://doi.org/10.1089/scd.2008.0270
Article CAS PubMed Google Scholar
Diaz-Vivancos P, de Simone A, Kiddle G, Foyer CH (2015) Glutathione–linking cell proliferation to oxidative stress. Free Radic Biol Med 89:1154–1164. https://doi.org/10.1016/j.freeradbiomed.2015.09.023
Article CAS PubMed Google Scholar
Favaro P, Traina F, Machado-Neto JA et al (2013) FMNL1 promotes proliferation and migration of leukemia cells. J Leukoc Biol 94:503–512. https://doi.org/10.1189/jlb.0113057
Article CAS PubMed Google Scholar
Gao J, Aksoy BA, Dogrusoz U et al (2013) Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 6:11. https://doi.org/10.1126/scisignal.2004088
Garg AD, Dudek AM, Ferreira GB et al (2013) ROS-induced autophagy in cancer cells assists in evasion from determinants of immunogenic cell death. Autophagy 9:1292–1307. https://doi.org/10.4161/auto.25399
Article CAS PubMed Google Scholar
Giacinti C, Giordano A (2006) RB and cell cycle progression. Oncogene 25:5220–5227. https://doi.org/10.1038/sj.onc.1209615
Article CAS PubMed Google Scholar
Jensen HA, Yourish HB, Bunaciu RP et al (2015) Induced myelomonocytic differentiation in leukemia cells is accompanied by noncanonical transcription factor expression. FEBS Open Bio 5:789–800. https://doi.org/10.1016/j.fob.2015.09.008
Article CAS PubMed PubMed Central Google Scholar
Liang H, Chen Q, Coles AH et al (2003) WNT5A inhibits B cell proliferation and functions as a tumor suppressor in hematopoietic tissue. Cancer Cell 4:349–360. https://doi.org/10.1016/s1535-6108(03)00268-x
Article CAS PubMed Google Scholar
Liou GY, Storz P (2010) Reactive oxygen species in cancer. Free Radic Res 44:479–496. https://doi.org/10.3109/10715761003667554
Article CAS PubMed Google Scholar
Luis TC, Ichii M, Brugman MH et al (2012) Wnt signaling strength regulates normal hematopoiesis and its deregulation is involved in leukemia development. Leukemia 26:414–421. https://doi.org/10.1038/leu.2011.387
Article CAS PubMed Google Scholar
Martín V, Valencia A, Agirre X et al (2010) Epigenetic regulation of the non-canonical Wnt pathway in acute myeloid leukemia. Cancer Sci 101:425–432. https://doi.org/10.1111/j.1349-7006.2009.01413.x
Article CAS PubMed Google Scholar
Mele L, Del Vecchio V, Liccardo D et al (2020) The role of autophagy in resistance to targeted therapies. Cancer Treat Rev 88:102043. https://doi.org/10.1016/j.ctrv.2020.102043
Article CAS PubMed Google Scholar
Melo RCC, Longhini AL, Bigarella CL et al (2014) CXCR7 is highly expressed in acute lymphoblastic leukemia and potentiates CXCR4 response to CXCL12. PLoS ONE 9:e85926. https://doi.org/10.1371/journal.pone.0085926
Article CAS PubMed PubMed Central Google Scholar
Méndez-Ferrer S, Bonnet D, Steensma DP et al (2020) Bone marrow niches in haematological malignancies. Nat Rev Cancer 20:285–298. https://doi.org/10.1038/s41568-020-0245-2
Article CAS PubMed PubMed Central Google Scholar
Mendoza MC, Vilela M, Juarez JE et al (2015) ERK reinforces actin polymerization to power persistent edge protrusion during motility. Sci Signal 8:ra47. https://doi.org/10.1126/scisignal.aaa8859
Article CAS PubMed PubMed Central Google Scholar
Nusse R, Clevers H (2017) Wnt/β-catenin signaling, disease, and emerging therapeutic modalities. Cell 169:985–999. https://doi.org/10.1016/j.cell.2017.05.016
Article CAS PubMed Google Scholar
Pavlaki K, Pontikoglou CG, Demetriadou A et al (2014) Impaired proliferative potential of bone marrow mesenchymal stromal cells in patients with myelodysplastic syndromes is associated with abnormal WNT signaling pathway. Stem Cells Dev 23:1568–1581. https://doi.org/10.1089/scd.2013.0283
Article CAS PubMed Google Scholar
Perillo B, Di Donato M, Pezone A et al (2020) ROS in cancer therapy: the bright side of the moon. Exp Mol Med 52:192–203. https://doi.org/10.1038/s12276-020-0384-2
Article CAS PubMed PubMed Central Google Scholar
Povinelli BJ, Nemeth MJ (2014) WNT5A regulates hematopoietic stem cell proliferation and repopulation through the Ryk receptor. Stem Cells 32:105–115. https://doi.org/10.1002/stem.1513
Article CAS PubMed Google Scholar
Roversi FM, Bueno MLP, da Silva JAF et al (2022) Novel inhibitor of hematopoietic cell kinase as a potential therapeutic agent for acute myeloid leukemia. Cancer Immunol Immunother 71:1909–1921. https://doi.org/10.1007/s00262-021-03111-2
Article CAS PubMed Google Scholar
Säfholm A, Leandersson K, Dejmek J et al (2006) A formylated hexapeptide ligand mimics the ability of Wnt-5a to impair migration of human breast epithelial cells. J Biol Chem 281:2740–2749. https://doi.org/10.1074/jbc.M508386200
Article CAS PubMed Google Scholar
Shen YL, Luo Q, Guo YX et al (2014) Bone marrow mesenchymal stem cell-derived WNT5A inhibits leukemia cell progression. Oncol Lett 8:85–90. https://doi.org/10.3892/ol.2014.2117
Article CAS PubMed PubMed Central Google Scholar
Sillar JR, Germon ZP, DeIuliis GN, Dun MD (2019) The role of reactive oxygen species in acute myeloid leukaemia. Int J Mol Sci 20:6003. https://doi.org/10.3390/ijms20236003
Article CAS PubMed PubMed Central Google Scholar
Skopek R, Palusińska M, Kaczor-Keller K et al (2023) Choosing the right cell line for acute myeloid leukemia (AML) research. Int J Mol Sci 24:5377. https://doi.org/10.3390/ijms24065377
Article CAS PubMed PubMed Central Google Scholar
Tyner JW, Tognon CE, Bottomly D et al (2018) Functional genomic landscape of acute myeloid leukaemia. Nature 562:526–531. https://doi.org/10.1038/s41586-018-0623-z
Article CAS PubMed PubMed Central Google Scholar
Valencia A, Román-Gómez J, Cervera J et al (2009) Wnt signaling pathway is epigenetically regulated by methylation of Wnt antagonists in acute myeloid leukemia. Leukemia 23:1658–1666. https://doi.org/10.1038/leu.2009.86
Article CAS PubMed Google Scholar
Yadav V, Jobe N, Mehdawi L, Andersson T (2021) Targeting Oncogenic WNT Signalling with WNT Signalling-Derived Peptides. Handb Exp Pharmacol 269:279–303. https://doi.org/10.1007/164_2021_528
Article CAS PubMed Google Scholar
Zang S, Liu N, Wang H et al (2014) Wnt signaling is involved in 6-benzylthioinosine-induced AML cell differentiation. BMC Cancer 14:886. https://doi.org/10.1186/1471-2407-14-886
Article CAS PubMed PubMed Central Google Scholar
Zhang Y, Choksi S, Chen K et al (2013) ROS play a critical role in the differentiation of alternatively activated macrophages and the occurrence of tumor-associated macrophages. Cell Res 23:898–914. https://doi.org/10.1038/cr.2013.75
Comments (0)