The antitumor effects of WNT5A against hematological malignancies

Asem MS, Buechler S, Wates RB et al (2016) WNT5A signaling in cancer. Cancers (Basel) 8:79. https://doi.org/10.3390/cancers8090079

Article  CAS  PubMed  Google Scholar 

Bernasconi P, Borsani O (2019) Targeting leukemia stem cell-niche dynamics: a new challenge in AML treatment. J Oncol 2019:8323592. https://doi.org/10.1155/2019/8323592

Article  CAS  PubMed  PubMed Central  Google Scholar 

Braicu C, Buse M, Busuioc C et al (2019) A comprehensive review on MAPK: a promising therapeutic target in cancer. Cancers (Basel) 11:1618. https://doi.org/10.3390/cancers11101618

Article  CAS  PubMed  Google Scholar 

Canesin G, Evans-Axelsson S, Hellsten R et al (2017) Treatment with the WNT5A-mimicking peptide Foxy-5 effectively reduces the metastatic spread of WNT5A-low prostate cancer cells in an orthotopic mouse model. PLoS ONE 12:e0184418. https://doi.org/10.1371/journal.pone.0184418

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cerami E, Gao J, Dogrusoz U et al (2012) The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2:401–404. https://doi.org/10.1158/2159-8290.CD-12-0095

Article  PubMed  Google Scholar 

Corrigan PM, Dobbin E, Freeburn RW, Wheadon H (2009) Patterns of Wnt/Fzd/LRP gene expression during embryonic hematopoiesis. Stem Cells Dev 18:759–772. https://doi.org/10.1089/scd.2008.0270

Article  CAS  PubMed  Google Scholar 

Diaz-Vivancos P, de Simone A, Kiddle G, Foyer CH (2015) Glutathione–linking cell proliferation to oxidative stress. Free Radic Biol Med 89:1154–1164. https://doi.org/10.1016/j.freeradbiomed.2015.09.023

Article  CAS  PubMed  Google Scholar 

Favaro P, Traina F, Machado-Neto JA et al (2013) FMNL1 promotes proliferation and migration of leukemia cells. J Leukoc Biol 94:503–512. https://doi.org/10.1189/jlb.0113057

Article  CAS  PubMed  Google Scholar 

Gao J, Aksoy BA, Dogrusoz U et al (2013) Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 6:11. https://doi.org/10.1126/scisignal.2004088

Article  CAS  Google Scholar 

Garg AD, Dudek AM, Ferreira GB et al (2013) ROS-induced autophagy in cancer cells assists in evasion from determinants of immunogenic cell death. Autophagy 9:1292–1307. https://doi.org/10.4161/auto.25399

Article  CAS  PubMed  Google Scholar 

Giacinti C, Giordano A (2006) RB and cell cycle progression. Oncogene 25:5220–5227. https://doi.org/10.1038/sj.onc.1209615

Article  CAS  PubMed  Google Scholar 

Jensen HA, Yourish HB, Bunaciu RP et al (2015) Induced myelomonocytic differentiation in leukemia cells is accompanied by noncanonical transcription factor expression. FEBS Open Bio 5:789–800. https://doi.org/10.1016/j.fob.2015.09.008

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liang H, Chen Q, Coles AH et al (2003) WNT5A inhibits B cell proliferation and functions as a tumor suppressor in hematopoietic tissue. Cancer Cell 4:349–360. https://doi.org/10.1016/s1535-6108(03)00268-x

Article  CAS  PubMed  Google Scholar 

Liou GY, Storz P (2010) Reactive oxygen species in cancer. Free Radic Res 44:479–496. https://doi.org/10.3109/10715761003667554

Article  CAS  PubMed  Google Scholar 

Luis TC, Ichii M, Brugman MH et al (2012) Wnt signaling strength regulates normal hematopoiesis and its deregulation is involved in leukemia development. Leukemia 26:414–421. https://doi.org/10.1038/leu.2011.387

Article  CAS  PubMed  Google Scholar 

Martín V, Valencia A, Agirre X et al (2010) Epigenetic regulation of the non-canonical Wnt pathway in acute myeloid leukemia. Cancer Sci 101:425–432. https://doi.org/10.1111/j.1349-7006.2009.01413.x

Article  CAS  PubMed  Google Scholar 

Mele L, Del Vecchio V, Liccardo D et al (2020) The role of autophagy in resistance to targeted therapies. Cancer Treat Rev 88:102043. https://doi.org/10.1016/j.ctrv.2020.102043

Article  CAS  PubMed  Google Scholar 

Melo RCC, Longhini AL, Bigarella CL et al (2014) CXCR7 is highly expressed in acute lymphoblastic leukemia and potentiates CXCR4 response to CXCL12. PLoS ONE 9:e85926. https://doi.org/10.1371/journal.pone.0085926

Article  CAS  PubMed  PubMed Central  Google Scholar 

Méndez-Ferrer S, Bonnet D, Steensma DP et al (2020) Bone marrow niches in haematological malignancies. Nat Rev Cancer 20:285–298. https://doi.org/10.1038/s41568-020-0245-2

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mendoza MC, Vilela M, Juarez JE et al (2015) ERK reinforces actin polymerization to power persistent edge protrusion during motility. Sci Signal 8:ra47. https://doi.org/10.1126/scisignal.aaa8859

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nusse R, Clevers H (2017) Wnt/β-catenin signaling, disease, and emerging therapeutic modalities. Cell 169:985–999. https://doi.org/10.1016/j.cell.2017.05.016

Article  CAS  PubMed  Google Scholar 

Pavlaki K, Pontikoglou CG, Demetriadou A et al (2014) Impaired proliferative potential of bone marrow mesenchymal stromal cells in patients with myelodysplastic syndromes is associated with abnormal WNT signaling pathway. Stem Cells Dev 23:1568–1581. https://doi.org/10.1089/scd.2013.0283

Article  CAS  PubMed  Google Scholar 

Perillo B, Di Donato M, Pezone A et al (2020) ROS in cancer therapy: the bright side of the moon. Exp Mol Med 52:192–203. https://doi.org/10.1038/s12276-020-0384-2

Article  CAS  PubMed  PubMed Central  Google Scholar 

Povinelli BJ, Nemeth MJ (2014) WNT5A regulates hematopoietic stem cell proliferation and repopulation through the Ryk receptor. Stem Cells 32:105–115. https://doi.org/10.1002/stem.1513

Article  CAS  PubMed  Google Scholar 

Roversi FM, Bueno MLP, da Silva JAF et al (2022) Novel inhibitor of hematopoietic cell kinase as a potential therapeutic agent for acute myeloid leukemia. Cancer Immunol Immunother 71:1909–1921. https://doi.org/10.1007/s00262-021-03111-2

Article  CAS  PubMed  Google Scholar 

Säfholm A, Leandersson K, Dejmek J et al (2006) A formylated hexapeptide ligand mimics the ability of Wnt-5a to impair migration of human breast epithelial cells. J Biol Chem 281:2740–2749. https://doi.org/10.1074/jbc.M508386200

Article  CAS  PubMed  Google Scholar 

Shen YL, Luo Q, Guo YX et al (2014) Bone marrow mesenchymal stem cell-derived WNT5A inhibits leukemia cell progression. Oncol Lett 8:85–90. https://doi.org/10.3892/ol.2014.2117

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sillar JR, Germon ZP, DeIuliis GN, Dun MD (2019) The role of reactive oxygen species in acute myeloid leukaemia. Int J Mol Sci 20:6003. https://doi.org/10.3390/ijms20236003

Article  CAS  PubMed  PubMed Central  Google Scholar 

Skopek R, Palusińska M, Kaczor-Keller K et al (2023) Choosing the right cell line for acute myeloid leukemia (AML) research. Int J Mol Sci 24:5377. https://doi.org/10.3390/ijms24065377

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tyner JW, Tognon CE, Bottomly D et al (2018) Functional genomic landscape of acute myeloid leukaemia. Nature 562:526–531. https://doi.org/10.1038/s41586-018-0623-z

Article  CAS  PubMed  PubMed Central  Google Scholar 

Valencia A, Román-Gómez J, Cervera J et al (2009) Wnt signaling pathway is epigenetically regulated by methylation of Wnt antagonists in acute myeloid leukemia. Leukemia 23:1658–1666. https://doi.org/10.1038/leu.2009.86

Article  CAS  PubMed  Google Scholar 

Yadav V, Jobe N, Mehdawi L, Andersson T (2021) Targeting Oncogenic WNT Signalling with WNT Signalling-Derived Peptides. Handb Exp Pharmacol 269:279–303. https://doi.org/10.1007/164_2021_528

Article  CAS  PubMed  Google Scholar 

Zang S, Liu N, Wang H et al (2014) Wnt signaling is involved in 6-benzylthioinosine-induced AML cell differentiation. BMC Cancer 14:886. https://doi.org/10.1186/1471-2407-14-886

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang Y, Choksi S, Chen K et al (2013) ROS play a critical role in the differentiation of alternatively activated macrophages and the occurrence of tumor-associated macrophages. Cell Res 23:898–914. https://doi.org/10.1038/cr.2013.75

Article  CAS  PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif