Applications of Artificial Intelligence in Echocardiography

Szolovits P, Patil RS, Schwartz WB. Artificial intelligence in medical diagnosis. Ann Intern Med. 1988;108:80–7.

Article  CAS  PubMed  Google Scholar 

Dey D, Slomka PJ, Leeson P, et al. Artificial intelligence in cardiovascular imaging: JACC state-of-the-art review. J Am Coll Cardiol. 2019;73:1317–35.

Article  PubMed  PubMed Central  Google Scholar 

Kusunose K, Haga A, Abe T, Sata M. Utilization of artificial intelligence in echocardiography. Circ J. 2019;83:1623–9.

Article  PubMed  Google Scholar 

Deo RC. Machine learning in medicine. Circ. 2015;132:1920–30.

Article  Google Scholar 

LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521:436–44.

Article  CAS  PubMed  Google Scholar 

Zhang J, Gajjala S, Agrawal P, et al. Fully automated echocardiogram interpretation in clinical practice. Circ. 2018;138:1623–35.

Article  Google Scholar 

Narang A, Bae R, Hong H, et al. Utility of a deep-learning algorithm to guide novices to acquire echocardiograms for limited diagnostic use. JAMA Cardiol. 2021;6:624–32.

Article  PubMed  Google Scholar 

Abdi AH, Luong C, Tsang T, et al. Automatic quality assessment of echocardiograms using convolutional neural networks: feasibility on the apical four-chamber view. IEEE Trans Med Imaging. 2017;36:1221–30.

Article  PubMed  Google Scholar 

Khamis H, Zurakhov G, Azar V, Raz A, Friedman Z, Adam D. Automatic apical view classification of echocardiograms using a discriminative learning dictionary. Med Image Anal. 2017;36:15–21.

Article  PubMed  Google Scholar 

Madani A, Arnaout R, Mofrad M, Arnaout R. Fast and accurate view classification of echocardiograms using deep learning. NPJ Digit Med. 2018;1:6. https://doi.org/10.1038/s41746-017-0013-1.

Kusunose K, Haga A, Inoue M, Fukuda D, Yamada H, Sata M. Clinically feasible and accurate view classification of echocardiographic images using deep learning. biomolecules. 2020;10(5):665. https://doi.org/10.3390/biom10050665.

Lang RM, Badano LP, Mor-Avi V, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2015;28(1–39):e14.

Google Scholar 

Tsang W, Salgo IS, Medvedofsky D, et al. Transthoracic 3D echocardiographic left heart chamber quantification using an automated adaptive analytics algorithm. JACC Cardiovasc Imaging. 2016;9:769–82.

Article  PubMed  Google Scholar 

Medvedofsky D, Mor-Avi V, Amzulescu M, et al. Three-dimensional echocardiographic quantification of the left-heart chambers using an automated adaptive analytics algorithm: multicentre validation study. Eur Heart J Cardiovasc Imaging. 2018;19:47–58.

Article  PubMed  Google Scholar 

Tamborini G, Piazzese C, Lang RM, et al. Feasibility and accuracy of automated software for transthoracic three-dimensional left ventricular volume and function analysis: comparisons with two-dimensional echocardiography, three-dimensional transthoracic manual method, and cardiac magnetic resonance imaging. J Am Soc Echocardiogr. 2017;30:1049–58.

Article  PubMed  Google Scholar 

Levy F, Dan Schouver E, Iacuzio L, et al. Performance of new automated transthoracic three-dimensional echocardiographic software for left ventricular volumes and function assessment in routine clinical practice: comparison with 3 Tesla cardiac magnetic resonance. Arch Cardiovasc Dis. 2017;110:580–9.

Article  PubMed  Google Scholar 

Sun L, Feng H, Ni L, Wang H, Gao D. Realization of fully automated quantification of left ventricular volumes and systolic function using transthoracic 3D echocardiography. Cardiovasc Ultrasound. 2018;16:2.

Article  PubMed  PubMed Central  Google Scholar 

Medvedofsky D, Mor-Avi V, Byku I, et al. Three-dimensional echocardiographic automated quantification of left heart chamber volumes using an adaptive analytics algorithm: feasibility and impact of image quality in nonselected patients. J Am Soc Echocardiogr. 2017;30:879–85.

Article  PubMed  PubMed Central  Google Scholar 

Narang A, Mor-Avi V, Prado A, et al. Machine learning based automated dynamic quantification of left heart chamber volumes. Eur Heart J Cardiovasc Imaging. 2019;20:541–9.

Article  PubMed  Google Scholar 

D’Elia N, Appadurai V, Mallouhi M, Ng J, Marwick T, Wahi S. Comparison of 3D echocardiographic-derived indices using fully automatic left ventricular endocardial tracing (heart model) and semiautomatic tracing (3DQ-ADV). Echocardiography. 2019;36:2057–63.

Article  PubMed  Google Scholar 

Volpato V, Mor-Avi V, Narang A, et al. Automated, machine learning-based, 3D echocardiographic quantification of left ventricular mass. Echocardiogr. 2019;36:312–9.

Article  Google Scholar 

Barbieri A, Bursi F, Camaioni G, Maisano A, Imberti JF, Albini A, De Mitri G, Mantovani F, Boriani G. Echocardiographic left ventricular mass assessment: correlation between 2D-derived linear dimensions and 3-Dimensional automated, machine learning-based methods in unselected patients. J Clin Med. 2021;10(6):1279. https://doi.org/10.3390/jcm10061279.

Qazi M, Fung G, Krishnan S, Bi J, Rao RB, Katz AS. Automated heart abnormality detection using sparse linear classifiers. IEEE Eng Med Biol Mag. 2007;26:56–63.

Article  PubMed  Google Scholar 

Huang MS, Wang CS, Chiang JH, Liu PY, Tsai WC. Automated recognition of regional wall motion abnormalities through deep neural network interpretation of transthoracic echocardiography. Circ. 2020;142:1510–20.

Article  Google Scholar 

Lin X, Yang F, Chen Y, et al. Echocardiography-based AI detection of regional wall motion abnormalities and quantification of cardiac function in myocardial infarction. Front Cardiovasc Med. 2022;9:903660.

Article  PubMed  PubMed Central  Google Scholar 

Gosling AF, Thalappillil R, Ortoleva J, Datta P, Cobey FC. Automated spectral Doppler profile tracing. J Cardiothorac Vasc Anesth. 2020;34:72–6.

Article  PubMed  Google Scholar 

Nolan MT, Thavendiranathan P. Automated quantification in echocardiography. JACC Cardiovasc Imaging. 2019;12:1073–92.

Article  PubMed  Google Scholar 

Moghaddasi H, Nourian S. Automatic assessment of mitral regurgitation severity based on extensive textural features on 2D echocardiography videos. Comput Biol Med. 2016;73:47–55.

Article  PubMed  Google Scholar 

Martins J, Nascimento ER, Nascimento BR, et al. Towards automatic diagnosis of rheumatic heart disease on echocardiographic exams through video-based deep learning. J Am Med Inform Assoc. 2021;28:1834–42.

Article  PubMed  PubMed Central  Google Scholar 

Vafaeezadeh M, Behnam H, Hosseinsabet A, Gifani P. A deep learning approach for the automatic recognition of prosthetic mitral valve in echocardiographic images. Comput Biol Med. 2021;133:104388.

Article  PubMed  Google Scholar 

Aquila I, Fernandez-Golfin C, Rincon LM, et al. Fully automated software for mitral annulus evaluation in chronic mitral regurgitation by 3-dimensional transesophageal echocardiography. Med. 2016;95:e5387.

Article  Google Scholar 

Calleja A, Thavendiranathan P, Ionasec RI, et al. Automated quantitative 3-dimensional modeling of the aortic valve and root by 3-dimensional transesophageal echocardiography in normals, aortic regurgitation, and aortic stenosis: comparison to computed tomography in normals and clinical implications. Circ Cardiovasc Imaging. 2013;6:99–108.

Article  PubMed  Google Scholar 

Garcia-Martin A, Lazaro-Rivera C, Fernandez-Golfin C, et al. Accuracy and reproducibility of novel echocardiographic three-dimensional automated software for the assessment of the aortic root in candidates for thanscatheter aortic valve replacement. Eur Heart J Cardiovasc Imaging. 2016;17:772–8.

Article  PubMed  Google Scholar 

Narula S, Shameer K, Salem Omar AM, Dudley JT, Sengupta PP. Machine-learning algorithms to automate morphological and functional assessments in 2D echocardiography. J Am Coll Cardiol. 2016;68:2287–95.

Article  PubMed  Google Scholar 

Sengupta PP, Huang YM, Bansal M, Ashrafi A, Fisher M, Shameer K, Gall W, Dudley JT. Cognitive machine-learning algorithm for cardiac imaging: a pilot study for differentiating constrictive pericarditis from restrictive cardiomyopathy. Circ Cardiovasc Imaging. 2016;9(6):e004330. https://doi.org/10.1161/CIRCIMAGING.115.004330.

Berchialla P, Foltran F, Bigi R, Gregori D. Integrating stress-related ventricular functional and angiographic data in preventive cardiology: a unified approach implementing a Bayesian network. J Eval Clin Pract. 2012;18:637–43.

Article  PubMed  Google Scholar 

Ernande L, Audureau E, Jellis CL, et al. Clinical implications of echocardiographic phenotypes of patients with diabetes mellitus. J Am Coll Cardiol. 2017;70:1704–16.

Article  PubMed  Google Scholar 

Agasthi P, Buras MR, Smith SD, et al. Machine learning helps predict long-term mortality and graft failure in patients undergoing heart transplant. Gen Thorac Cardiovasc Surg. 2020;68:1369–76.

Article  PubMed  Google Scholar 

Nabi W, Bansal A, Xu B. Applications of artificial intelligence and machine learning approaches in echocardiography. Echocardiogr. 2021;38:982–92.

Article  Google Scholar 

Krittanawong C, Johnson KW, Rosenson RS, et al. Deep learning for cardiovascular medicine: a practical primer. Eur Heart J. 2019;40:2058–73.

Article  PubMed  PubMed Central  Google Scholar 

Olson RS, Cava W, Mustahsan Z, Varik A, Moore JH. Data-driven advice for applying machine learning to bioinformatics problems. Pac Symp Biocomput. 2018;23:192–203.

PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif