Cytogenetic and Genome Research
Bunyan D.J. · Hobbs J.I. · Duncan-Flavell P.J. · Howarth R.J. · Beal S. · Baralle D. · Thomas N.S.Log in to MyKarger to check if you already have access to this content.
Buy FullText & PDF Unlimited re-access via MyKarger Unrestricted printing, no saving restrictions for personal use read more
CHF 38.00 *
EUR 35.00 *
USD 39.00 *
Buy a Karger Article Bundle (KAB) and profit from a discount!
If you would like to redeem your KAB credit, please log in.
Save over 20% compared to the individual article price. Rent via DeepDyve Unlimited fulltext viewing of this article Organize, annotate and mark up articles Printing and downloading restrictions apply Subscribe Access to all articles of the subscribed year(s) guaranteed for 5 years Unlimited re-access via Subscriber Login or MyKarger Unrestricted printing, no saving restrictions for personal use read more Select* The final prices may differ from the prices shown due to specifics of VAT rules.
Article / Publication Details AbstractTranscription of SHOX is dependent upon the interaction of the gene with a complex array of flanking regulatory elements. Duplications that contain flanking regulatory elements but not the SHOX gene have been reported in individuals with SHOX haploinsufficiency syndromes, suggesting that alterations to the physical organisation or genomic architecture may affect SHOX transcription. Individuals with tall stature and an additional X or Y chromosome have an extra copy of both the SHOX gene and the entire SHOX regulatory region, so all three copies of SHOX can be expressed fully. However, for a duplication of the SHOX gene that does not include all of the flanking regulatory elements, the potential effect on SHOX expression is difficult to predict. We present nine unpublished individuals with a SHOX whole gene duplication in whom the duplication contains variable amounts of the SHOX regulatory region, and we review 29 similar cases from the literature where phenotypic data were clearly stated. While tall stature was present in a proportion of these cases, we present evidence that SHOX whole gene duplications can also result in a phenotype more typically associated with SHOX haploinsufficiency and are significantly over-represented in Leri-Weill Dyschondrosteosis and idiopathic short stature probands compared to population controls. Although similar-looking duplications do not always produce a consistent phenotype, there may be potential genotype-phenotype correlations regarding the duplication size, regulatory element content and the breakpoint proximity to the SHOX gene. Although ClinGen (clinicalgenome.org) do not currently consider SHOX whole gene duplications to be clinically significant, the ClinGen triplosensitivity score does not take into account the context of the duplication, and more is now known about SHOX duplications and the role of flanking elements in SHOX regulation. The evidence presented here suggest that these duplications should not be discounted without considering the extent of the duplication and the patient phenotype, and should be included on diagnostic laboratory reports as variants of uncertain significance. Given the uncertain pathogenicity of these duplications, any reports should encourage the exclusion of all other causes of short stature where possible.
S. Karger AG, Basel
Article / Publication Details Copyright / Drug Dosage / Disclaimer Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Comments (0)