Diabetic cardiomyopathy has been reported to increase the risk of fatal ventricular arrhythmia. The beneficial effects of the selective sodium-glucose co-transporter 2 inhibitor have not been fully examined in the context of anti-arrhythmic therapy, especially its direct cardioprotective effects despite the negligible SGLT2 expression in cardiomyocytes. We aimed to examine the anti-arrhythmic effects of empagliflozin (EMPA) treatment on diabetic cardiomyocytes, with a special focus on Ca2+ handling. We conducted echocardiography and hemodynamic studies and studied electrophysiology, Ca2+ handling, and protein expression in C57BLKS/J-leprdb/db mice (db/db mice) and their non-diabetic lean heterozygous Leprdb/+ littermates (db/+ mice). Preserved systolic function with diastolic dysfunction was observed in 16-week-old db/db mice. During arrhythmia induction, db/db mice had significantly increased premature ventricular complexes (PVCs) than controls, which was attenuated by EMPA. In protein expression analyses, calmodulin-dependent protein kinase II (CaMKII) Thr287 autophosphorylation and CaMKII-dependent RyR2 phosphorylation (S2814) were significantly increased in diabetic hearts, which were inhibited by EMPA. Additionally, global O-GlcNAcylation significantly decreased with EMPA treatment. Furthermore, EMPA significantly inhibited ventricular cardiomyocyte glucose uptake. Diabetic cardiomyocytes exhibited increased spontaneous Ca2+ events and decreased sarcoplasmic reticulum (SR) Ca2+ content, along with impaired Ca2+ transient, all of which normalized with EMPA treatment. Notably, most EMPA-induced improvements in Ca2+ handling were abolished by the addition of an O-GlcNAcase (OGA) inhibitor. In conclusion, EMPA attenuated ventricular arrhythmia inducibility by normalizing the intracellular Ca2+ handling, and we speculated that this effect was, at least partly, due to the inhibition of O-GlcNAcylation via the suppression of glucose uptake into cardiomyocytes.
Comments (0)