The Role of Fetal Brain Magnetic Resonance Imaging in Current Fetal Medicine

Elkan Miller T, Weisz B, Yinon Y, et al. Congenital cytomegalovirus infection following second and third trimester maternal infection is associated with mild childhood adverse outcome not predicted by prenatal imaging. Journal of the Pediatric Infectious Diseases Society. 2021; 10(5): 562–8. DOI: https://doi.org/10.1093/jpids/piaa154 

Kyriakopoulou A, Serghiou S, Dimopoulou D, et al. Antenatal imaging and clinical outcome in congenital CMV infection: A field-wide systematic review and meta-analysis. The Journal of infection. 2020; 80(4): 407–18. DOI: https://doi.org/10.1016/j.jinf.2020.02.012 

Aertsen M, Dymarkowski S, Vander Mijnsbrugge W, Cockmartin L, et al. Anatomical and diffusion-weighted imaging abnormalities of third-trimester fetal brain in cytomegalovirus-infected fetuses. Ultrasound Obstet Gynecol. 2022; 60(1): 68–75. DOI: https://doi.org/10.1002/uog.24856 

Leruez-Ville M, Ghout I, Bussieres L, et al. In utero treatment of congenital cytomegalovirus infection with valacyclovir in a multicenter, open-label, phase II study. Am J Obstet Gynecol. 2016; 215(4): 462 e1–e10. DOI: https://doi.org/10.1016/j.ajog.2016.04.003 

Cannie MM, Devlieger R, Leyder M, et al. Congenital cytomegalovirus infection: contribution and best timing of prenatal MR imaging. European Radiology. 2016; 26(10): 3760–9. DOI: https://doi.org/10.1007/s00330-015-4187-0 

Leruez-Ville M, Ren S, Magny JF, et al. Accuracy of prenatal ultrasound screening to identify fetuses infected by cytomegalovirus which will develop severe long-term sequelae. Ultrasound Obstet Gynecol. 2021; 57(1): 97–104. DOI: https://doi.org/10.1002/uog.22056 

Heuer GG, Moldenhauer JS, Scott Adzick N. Prenatal surgery for myelomeningocele: review of the literature and future directions. Childs Nerv Syst. 2017; 33(7): 1149–55. DOI: https://doi.org/10.1007/s00381-017-3440-z 

Aertsen M, Verduyckt J, De Keyzer F, et al. Reliability of MR Imaging–Based Posterior Fossa and Brain Stem Measurements in Open Spinal Dysraphism in the Era of Fetal Surgery. American Journal of Neuroradiology. 2019; 40(1): 191–8. DOI: https://doi.org/10.3174/ajnr.A5930 

Adzick NS, Thom EA, Spong CY, et al. A Randomized Trial of Prenatal versus Postnatal Repair of Myelomeningocele. New England Journal of Medicine. 2011; 364(11): 993–1004. DOI: https://doi.org/10.1056/NEJMoa1014379 

Sepulveda F, Quezada F, Montoya F, Sepulveda W. Interpeduncular angle: A new parameter for assessing intracranial hypotension in fetuses with spinal dysraphism. Prenat Diagn; 2021. DOI: https://doi.org/10.1002/pd.5905 

Sutton LN. Improvement in Hindbrain Herniation Demonstrated by Serial Fetal Magnetic Resonance Imaging Following Fetal Surgery for Myelomeningocele. 1999; 282(19): 1826. DOI: https://doi.org/10.1001/jama.282.19.1826 

Joyeux L, Van der Merwe J, Aertsen M, et al. Neuroprotection is improved by watertightness of fetal spina bifida repair in fetal lamb. Ultrasound Obstet Gynecol; 2022. DOI: https://doi.org/10.1002/uog.24907 

Zarutskie A, Guimaraes C, Yepez M, et al. Prenatal brain imaging for predicting need for postnatal hydrocephalus treatment in fetuses that had neural tube defect repair in utero. Ultrasound Obstet Gynecol. 2019; 53(3): 324–34. DOI: https://doi.org/10.1002/uog.20212 

Rethmann C, Scheer I, Meuli M, et al. Evolution of posterior fossa and brain morphology after in utero repair of open neural tube defects assessed by MRI. Eur Radiol. 2017; 27(11): 4571–80. DOI: https://doi.org/10.1007/s00330-017-4807-y 

Nagaraj UD, Peiro JL, Bierbrauer KS, et al. Evaluation of Subependymal Gray Matter Heterotopias on Fetal MRI. AJNR Am J Neuroradiol. 2016; 37(4): 720–5. DOI: https://doi.org/10.3174/ajnr.A4585 

Trigo L, Eixarch E, Bottura I, et al. Prevalence of supratentorial anomalies assessed by magnetic resonance imaging in fetuses with open spina bifida. Ultrasound Obstet Gynecol. 2022; 59(6): 804–12. DOI: https://doi.org/10.1002/uog.23761 

Crombag N, Sacco A, Stocks B, et al. ‘We did everything we could’- a qualitative study exploring the acceptability of maternal-fetal surgery for spina bifida to parents. Prenat Diagn. 2021; 41(8): 910–21. DOI: https://doi.org/10.1002/pd.5996 

McLone DG, Dias MS. The Chiari II malformation: cause and impact. Childs Nerv Syst. 2003; 19(7–8): 540–50. DOI: https://doi.org/10.1007/s00381-003-0792-3 

Blondiaux E, Sileo C, Nahama-Allouche C, et al. Periventricular nodular heterotopia on prenatal ultrasound and magnetic resonance imaging. Ultrasound Obstet Gynecol. 2013; 42(2): 149–55. DOI: https://doi.org/10.1002/uog.12340 

Glenn OA, Cuneo AA, Barkovich AJ, et al. Malformations of cortical development: diagnostic accuracy of fetal MR imaging. Radiology. 2012; 263(3): 843–55. DOI: https://doi.org/10.1148/radiol.12102492 

Miller E, Widjaja E, Blaser S, et al. The old and the new: supratentorial MR findings in Chiari II malformation. Childs Nerv Syst. 2008; 24(5): 563–75. DOI: https://doi.org/10.1007/s00381-007-0528-x 

Mitchell LA, Simon EM, Filly RA, Barkovich AJ. Antenatal Diagnosis of Subependymal Heterotopia. 2000; 21(2): 296–300. 

Mufti N, Sacco A, Aertsen M, et al. What brain abnormalities can magnetic resonance imaging detect in foetal and early neonatal spina bifida: a systematic review. Neuroradiology. 2022; 64(2): 233–45. DOI: https://doi.org/10.1007/s00234-021-02853-1 

Ebner M, Wang GT, Li WQ, et al. An automated framework for localization, segmentation and super-resolution reconstruction of fetal brain MRI. Neuroimage. 2020; 206. DOI: https://doi.org/10.1016/j.neuroimage.2019.116324 

Fidon L, Ourselin S, Vercauteren T. Distributionally Robust Deep Learning using Hardness Weighted Sampling 2020; 2020 January: [arXiv: 2001.02658 p.]. https://ui.adsabs.harvard.edu/abs/2020arXiv200102658F. 

Mufti N, Aertsen M, Ebner M, et al. Cortical spectral matching and shape and volume analysis of the fetal brain pre- and post-fetal surgery for spina bifida: a retrospective study. Neuroradiology. 2021; 63(10): 1721–34. DOI: https://doi.org/10.1007/s00234-021-02725-8 

Danzer E, Joyeux L, Flake AW, et al. Fetal surgical intervention for myelomeningocele: lessons learned, outcomes, and future implications. Dev Med Child Neurol. 2020; 62(4): 417–25. DOI: https://doi.org/10.1111/dmcn.14429 

Joyeux L, Belfort MA. Fetal surgery for spina bifida: a great success story in surgical innovation. Dev Med Child Neurol. 2021; 63(11): 1243–4. DOI: https://doi.org/10.1111/dmcn.15019 

Sanz Cortes M, Chmait RH, Lapa DA, et al. Experience of 300 cases of prenatal fetoscopic open spina bifida repair: report of the International Fetoscopic Neural Tube Defect Repair Consortium. Am J Obstet Gynecol. 2021; 225(6): 678 e1–e11. DOI: https://doi.org/10.1016/j.ajog.2021.05.044 

Nagaraj UD, Bierbrauer KS, Stevenson CB, et al. Prenatal and postnatal MRI findings in open spinal dysraphism following intrauterine repair via open versus fetoscopic surgical techniques. Prenat Diagn. 2020; 40(1): 49–57. DOI: https://doi.org/10.1002/pd.5540 

Nagaraj UD, Bierbrauer KS, Stevenson CB, et al. Spinal Imaging Findings of Open Spinal Dysraphisms on Fetal and Postnatal MRI. AJNR Am J Neuroradiol. 2018; 39(10): 1947–52. DOI: https://doi.org/10.3174/ajnr.A5760 

Nagaraj UD, Bierbrauer KS, Stevenson CB, et al. Myelomeningocele Versus Myelocele on Fetal MR Images: Are There Differences in Brain Findings? AJR Am J Roentgenol. 2018; 211(6): 1376–80. DOI: https://doi.org/10.2214/AJR.18.20088 

Nagaraj UD, Bierbrauer KS, Zhang B, et al. Hindbrain Herniation in Chiari II Malformation on Fetal and Postnatal MRI. AJNR Am J Neuroradiol. 2017; 38(5): 1031–6. DOI: https://doi.org/10.3174/ajnr.A5116 

Del Bigio MR. Neuropathology and structural changes in hydrocephalus. Developmental Disabilities Research Reviews. 2010; 16(1): 16–22. DOI: https://doi.org/10.1002/ddrr.94 

Juranek J, Dennis M, Cirino PT, et al. The cerebellum in children with spina bifida and Chiari II malformation: Quantitative volumetrics by region. Cerebellum. 2010; 9(2): 240–8. DOI: https://doi.org/10.1007/s12311-010-0157-x 

Juranek J, Salman MS. Anomalous development of brain structure and function in spina bifida myelomeningocele. Developmental Disabilities Research Reviews. 2010; 16(1): 23–30. DOI: https://doi.org/10.1002/ddrr.88 

McLone DG, Knepper PA. The cause of Chiari II malformation: a unified theory. Pediatric neuroscience. 1989; 15(1): 1–12. DOI: https://doi.org/10.1159/000120432 

Juranek J, Fletcher JM, Hasan KM, et al. Neocortical reorganization in spina bifida. Neuroimage. 2008; 40(4): 1516–22. DOI: https://doi.org/10.1016/j.neuroimage.2008.01.043 

Treble A, Juranek J, Stuebing KK, et al. Functional significance of atypical cortical organization in spina bifida myelomeningocele: relations of cortical thickness and gyrification with IQ and fine motor dexterity. Cerebral Cortex (New York, NY 1991). 2013; 23(10): 2357–69. DOI: https://doi.org/10.1093/cercor/bhs226 

Fidon L, Viola E, Mufti N, et al. A spatio-temporal atlas of the developing fetal brain with spina bifida aperta [version 1; peer review: 1 approved]. 2021; 1(123). DOI: https://doi.org/10.12688/openreseurope.13914.1 

Jakab A, Payette K, Mazzone L, et al. Emerging magnetic resonance imaging techniques in open spina bifida in utero. European Radiology Experimental. 2021; 5(1): 23. DOI: https://doi.org/10.1186/s41747-021-00219-z 

Russo FM, Cordier AG, Basurto D, et al. Fetal endoscopic tracheal occlusion reverses the natural history of right-sided congenital diaphragmatic hernia: European multicenter experience. Ultrasound Obstet Gynecol. 2021; 57(3): 378–85. DOI: https://doi.org/10.1002/uog.23115 

Deprest JA, Nicolaides KH, Benachi A, et al. Randomized Trial of Fetal Surgery for Severe Left Diaphragmatic Hernia. N Engl J Med; 2021. DOI: https://doi.org/10.1056/NEJMoa2027030 

Deprest JA, Benachi A, Gratacos E, et al. Randomized Trial of Fetal Surgery for Moderate Left Diaphragmatic Hernia. N Engl J Med; 2021. DOI: https://doi.org/10.1056/NEJMoa2026983 

Van der Veeken L, Vergote S, Kunpalin Y, Kristensen K, Deprest J, et al. Neurodevelopmental outcomes in children with isolated congenital diaphragmatic hernia: A systematic review and meta-analysis. Prenat Diagn; 2021. DOI: https://doi.org/10.1002/pd.5916 

Danzer E, Hoffman C, D’Agostino JA, et al. Neurodevelopmental outcomes at 5 years of age in congenital diaphragmatic hernia. J Pediatr Surg. 2017; 52(3): 437–43. DOI: https://doi.org/10.1016/j.jpedsurg.2016.08.008 

Danzer E, Kim SS. Neurodevelopmental outcome in congenital diaphragmatic hernia: Evaluation, predictors and outcome. World J Clin Pediatr. 2014; 3(3): 30–6. DOI: https://doi.org/10.5409/wjcp.v3.i3.30 

Van Mieghem T, Sandaite I, Michielsen K, et al. Fetal cerebral blood flow velocities in congenital diaphragmatic hernia. Ultrasound Obstet Gynecol. 2010; 36(4): 452–7. DOI: https://doi.org/10.1002/uog.7703 

Vogel M, McElhinney DB, Marcus E, et al. Significance and outcome of left heart hypoplasia in fetal congenital diaphragmatic hernia. Ultrasound Obstet Gynecol. 2010; 35(3): 310–7. DOI: https://doi.org/10.1002/uog.7497 

Radhakrishnan R, Merhar SL, Su W, et al. Prenatal Factors Associated with Postnatal Brain Injury in Infants with Congenital Diaphragmatic Hernia. AJNR Am J Neuroradiol. 2018; 39(3): 558–62. DOI: https://doi.org/10.3174/ajnr.A5500 

Miyajima M, Arai H. Evaluation of the Production and Absorption of Cerebrospinal Fluid. Neurol Med Chir (Tokyo). 2015; 55(8): 647–56. DOI: https://doi.org/10.2176/nmc.ra.2015-0003 

Danzer E, Hoffman C, D’Agostino JA, et al. Short-Term Neurodevelopmental Outcome in Congenital Diaphragmatic Hernia: The Impact of Extracorporeal Membrane Oxygenation and Timing of Repair. Pediatr Crit Care Med. 2018; 19(1): 64–74. DOI: https://doi.org/10.1097/PCC.0000000000001406 

Danzer E, Zarnow D, Gerdes M, et al. Abnormal brain development and maturation on magnetic resonance imaging in survivors of severe congenital diaphragmatic hernia. Journal of Pediatric Surgery. 2012; 47(3): 453–61. DOI: https://doi.org/10.1016/j.jpedsurg.2011.10.002 

Radhakrishnan R, Merhar SL, Burns P, et al. Fetal brain morphometry on prenatal magnetic resonance imaging in congenital diaphragmatic hernia. Pediatric Radiology. 2019; 49(2): 217–23. DOI: https://doi.org/10.1007/s00247-018-4272-z 

Radhakrishnan R, Merhar S, Meinzen-Derr J, et al. Correlation of MRI Brain Injury Findings with Neonatal Clinical Factors in Infants with Congenital Diaphragmatic Hernia. AJNR Am J Neuroradiol. 2016; 37(9): 1745–51. DOI: https://doi.org/10.3174/ajnr.A4787 

Lucignani M, Longo D, Fontana E, et al. Morphometric Analysis of Brain in Newborn with Congenital Diaphragmatic Hernia. Brain Sci. 2021; 11(4). DOI: https://doi.org/10.3390/brainsci11040455 

Navti OB, Al-Belushi M, Konje JC. Cytomegalovirus infection in pregnancy – An update. European Journal of Obstetrics, Gynecology, and Reproductive Biology. 2021; 258: 216–22. DOI: https://doi.org/10.1016/j.ejogrb.2020.12.006 

Buca D, Di Mascio D, Rizzo G, et al. Outcome of fetuses with congenital cytomegalovirus infection and normal ultrasound at diagnosis: systematic review and meta-analysis. Ultrasound Obstet Gynecol. 2021; 57(4): 551–9. DOI: https://doi.org/10.1002/uog.23143 

Leruez-Ville M, Foulon I, Pass R, et al. Cytomegalovirus infection during pregnancy: state of the science. Am J Obstet Gynecol. 2020; 223(3): 330–49. DOI: https://doi.org/10.1016/j.ajog.2020.02.018 

Lipitz S, Yinon Y, Malinger G, et al. Risk of cytomegalovirus-associated sequelae in relation to time of infection and findings on prenatal imaging. Ultrasound Obstet Gynecol. 2013; 41(5): 508–14. DOI: https://doi.org/10.1002/uog.12377 

Dreher AM, Arora N, Fowler KB, et al. Spectrum of disease and outcome in children with symptomatic congenital cytomegalovirus infection. J Pediatr. 2014; 164(4): 855–9. DOI: https://doi.org/10.1016/j.jpeds.2013.12.007 

Leruez-Ville M, Ville Y. Fetal cytomegalovirus infection. Best Practice & Research Clinical Obstetrics & Gynaecology. 2017; 38: 97–107. DOI: https://doi.org/10.1016/j.bpobgyn.2016.10.005 

Lucignani G, Rossi Espagnet MC, Napolitano A, et al. A new MRI severity score to predict long-term adverse neurologic outcomes in children with congenital Cytomegalovirus infection. The Journal of Maternal-Fetal & Neonatal Medicine: the Official Journal of the European Association of Perinatal Medicine, the Federation of Asia and Oceania Perinatal Societies, the International Society of Perinatal Obstet. 2021; 34(6): 859–66. DOI: https://doi.org/10.1080/14767058.2019.1620725 

Doneda C, Parazzini C, Righini A, Rustico M, et al. Early cerebral lesions in cytomegalovirus infection: prenatal MR imaging. Radiology. 2010; 255(2): 613–21. DOI: https://doi.org/10.1148/radiol.10090749 

Yaniv G, Hoffmann C, Weisz B, et al. Region-specific reductions in brain apparent diffusion coefficient in cytomegalovirus-infected fetuses. Ultrasound Obstet Gynecol. 2016; 47(5): 600–7. DOI: https://doi.org/10.1002/uog.14737 

Diogo MC, Glatter S, Binder J, et al. The MRI spectrum of congenital cytomegalovirus infection. Prenat Diagn. 2020; 40(1): 110–24. DOI: https://doi.org/10.1002/pd.5591 

Roee B, Adi W, Michael B, et al. Subtle findings on fetal brain imaging in CMV infected pregnancies: What is the clinical significance? A retrospective analysis with outcome correlation. Prenat Diagn. 2020; 40(4): 447–53. DOI: https://doi.org/10.1002/pd.5634 

Van der Voorn JP, Pouwels PJ, Vermeulen RJ, et al. Quantitative MR imaging and spectroscopy in congenital cytomegalovirus infection and periventricular leukomalacia suggests a comparable neuropathological substrate of the cerebral white matter lesions. Neuropediatrics. 2009; 40(4): 168–73. DOI: https://doi.org/10.1055/s-0029-1243228 

Lopriore E, Van Wezel-Meijler G, Middeldorp JM, et al. Incidence, origin, and character of cerebral injury in twin-to-twin transfusion syndrome treated with fetoscopic laser surgery. Am J Obstet Gynecol. 2006; 194(5): 1215–20. DOI: https://doi.org/10.1016/j.ajog.2005.12.003 

Sananès N, Gabriele V, Weingertner AS, et al. Evaluation of long-term neurodevelopment in twin-twin transfusion syndrome after laser therapy. Prenat Diagn. 2016; 36(12): 1139–45. DOI: https://doi.org/10.1002/pd.4950 

Schou KV, Lando AV, Ekelund CK, et al. Long-Term Neurodevelopmental Outcome of Monochorionic Twins after Laser Therapy or Umbilical Cord Occlusion for Twin-Twin Transfusion Syndrome. Fetal Diagn Ther. 2019; 46(1): 20–7. DOI: https://doi.org/10.1159/000491787 

Griffiths PD, Sharrack S, Chan KL, et al. Fetal brain injury in survivors of twin pregnancies complicated by demise of one twin as assessed by in utero MR imaging. Prenat Diagn. 2015; 35(6): 583–91. DOI: https://doi.org/10.1002/pd.4577 

Stirnemann J, Chalouhi G, Essaoui M, et al. Fetal brain imaging following laser surgery in twin-to-twin surgery. BJOG: An International Journal of Obstetrics and Gynaecology. 2018; 125(9): 1186–91. DOI: https://doi.org/10.1111/1471-0528.14162 

Khalil A, Rodgers M, Baschat A, et al. ISUOG Practice Guidelines: role of ultrasound in twin pregnancy. Ultrasound Obstet Gynecol. 2016; 47(2): 247–63. DOI: https://doi.org/10.1002/uog.15821 

Aertsen M, Van Tieghem De Ten Berghe C, Deneckere S, et al. The prevalence of brain lesions after in utero surgery for twin-to-twin transfusion syndrome on third-trimester MRI: a retrospective cohort study. Eur Radiol. 2021; 31(6): 4097–103. DOI: https://doi.org/10.1007/s00330-020-07452-x 

Righini A, Parazzini C, Doneda C, et al. Early formative stage of human focal cortical gyration anomalies: fetal MRI. AJR Am J Roentgenol. 2012; 198(2): 439–47. DOI: https://doi.org/10.2214/AJR.11.6662 

Paladini D, Quarantelli M, Sglavo G, et al. Accuracy of neurosonography and MRI in clinical management of fetuses referred with central nervous system abnormalities. Ultrasound Obstet Gynecol. 2014; 44(2): 188–96. DOI: https://doi.org/10.1002/uog.13243 

Prayer D, Malinger G, Brugger PC, et al. ISUOG Practice Guidelines: performance of fetal magnetic resonance imaging. Ultrasound Obstet Gynecol. 2017; 49(5): 671–80. DOI: https://doi.org/10.1002/uog.17412 

Malinger G, Ben-Sira L, Lev D, et al. Fetal brain imaging: a comparison between magnetic resonance imaging and dedicated neurosonography. Ultrasound Obst Gyn. 2004; 23(4): 333–40. DOI: https://doi.org/10.1002/uog.1016 

Paladini D, Malinger G, Pilu G, et al. The MERIDIAN trial: caution is needed. Lancet. 2017; 389(10084): 2103. DOI: https://doi.org/10.1016/S0140-6736(17)31337-5 

Pistorius LR, Hellmann PM, Visser GH, et al. Fetal neuroimaging: ultrasound, MRI, or both? Obstet Gynecol Surv. 2008; 63(11): 733–45. DOI: https://doi.org/10.1097/OGX.0b013e318186d3ea 

Comments (0)

No login
gif