Advances in imaging and treatment of atherosclerosis based on organic nanoparticles

MRIPolymeric NPs liposomes micellesRadiofrequency wavesFe3+ polymeric NP, gadolinium (Gd)-containing liposomes, Gd/superparamagnetic iron oxide (SPIO)-containing liposomes, Gd-containing micelles, iron oxide/manganese oxide micellesHigh spatial resolution, deep tissue penetration, high soft-tissue contrastLow sensitivity, high cost, long scan time19–2319. D. Mu, X. Wang, H. Wang, X. Sun, Q. Dai, P. Lv et al., “ Chemiexcited photodynamic therapy integrated in polymeric nanoparticles capable of MRI against atherosclerosis,” Int. J. Nanomed. 17, 2353–2366 (2022). https://doi.org/10.2147/IJN.S35579020. D. G. Woodside, E. A. Tanifum, K. B. Ghaghada, R. J. Biediger, A. R. Caivano, Z. A. Starosolski et al., “ Magnetic resonance imaging of atherosclerotic plaque at clinically relevant field strengths (1T) by targeting the integrin α4β1,” Sci. Rep. 8, 3733 (2018). https://doi.org/10.1038/s41598-018-21893-x21. S. Ye, Y. Liu, Y. Lu, Y. Ji, L. Mei, M. Yang et al., “ Cyclic RGD functionalized liposomes targeted to activated platelets for thrombosis dual-mode magnetic resonance imaging,” J. Mater. Chem. B 8, 447–453 (2020). https://doi.org/10.1039/C9TB01834D22. D. D. Chin, C. Poon, N. Trac, J. Wang, J. Cook, J. Joo et al., “ Collagenase-cleavable peptide amphiphile micelles as a novel theranostic strategy in atherosclerosis,” Adv. Ther. 3, 1900196 (2020). https://doi.org/10.1002/adtp.20190019623. C. Poon, J. Gallo, J. Joo, T. Chang, M. Bañobre-López, and E. J. Chung, “ Hybrid, metal oxide-peptide amphiphile micelles for molecular magnetic resonance imaging of atherosclerosis,” J. Nanobiotechnol. 16, 92 (2018). https://doi.org/10.1186/s12951-018-0420-8NIRFIPolymeric NPs liposomes micellesNear-infrared lightBoron dipyrromethene fluorophore (BOD)-L-βGal polymeric NPs, indocyanine green (ICG)-containing liposomes, ICG-containing micellesHigh sensitivity, short scan time, deep tissue penetrationLow spatial resolution, poor target location24–2624. J. A. Chen, W. Guo, Z. Wang, N. Sun, H. Pan, J. Tan et al., “ In vivo imaging of senescent vascular cells in atherosclerotic mice using a β-galactosidase-activatable nanoprobe,” Anal Chem. 92, 12613–12621 (2020). https://doi.org/10.1021/acs.analchem.0c0267025. Y. Narita, K. Shimizu, K. Ikemoto, R. Uchino, M. Kosugi, M. B. Maess et al., “ Macrophage-targeted, enzyme-triggered fluorescence switch-on system for detection of embolism-vulnerable atherosclerotic plaques,” J. Controlled Release 302, 105–115 (2019). https://doi.org/10.1016/j.jconrel.2019.03.02526. S. Yi, S. D. Allen, Y. G. Liu, B. Z. Ouyang, X. Li, P. Augsornworawat et al., “ Tailoring nanostructure morphology for enhanced targeting of dendritic cells in atherosclerosis,” ACS Nano 10, 11290–11303 (2016). https://doi.org/10.1021/acsnano.6b06451PAIPolymeric NPsPhoto-induced US wavesSemiconducting polymeric NPsHigh sensitivity, high spatial resolution, short scan timeLimited tissue-penetration depth2727. Z. Xie, Y. Yang, Y. He, C. Shu, D. Chen, J. Zhang et al., “ In vivo assessment of inflammation in carotid atherosclerosis by noninvasive photoacoustic imaging,” Theranostics 10, 4694–4704 (2020). https://doi.org/10.7150/thno.41211PETPolymeric NPsAnnihilation photos64Cu-labeled polymeric NPs, 89Zr-labeled polymeric NPsHigh sensitivity, high specificity, quantitativeHigh cost, low spatial resolution, lack of anatomical reference28–3028. M. Nahrendorf, F. F. Hoyer, A. E. Meerwaldt, M. M. T. van Leent, M. L. Senders, C. Calcagno et al., “ Imaging cardiovascular and lung macrophages with the positron emission tomography sensor 64Cu-macrin in mice, rabbits, and pigs,” Circ Cardiovasc Imaging 13, e010586 (2020). https://doi.org/10.1161/CIRCIMAGING.120.01058629. Y. Liu, H. P. Luehmann, L. Detering, E. D. Pressly, A. J. McGrath, D. Sultan et al., “ Assessment of targeted nanoparticle assemblies for atherosclerosis imaging with positron emission tomography and potential for clinical translation,” ACS Appl. Mater. Interfaces 11, 15316–15321 (2019). https://doi.org/10.1021/acsami.9b0275030. T. J. Beldman, M. L. Senders, A. Alaarg, C. Pérez-Medina, J. Tang, Y. Zhao et al., “ Hyaluronan nanoparticles selectively target plaque-associated macrophages and improve plaque stability in atherosclerosis,” ACS Nano 11, 5785–5799 (2017). https://doi.org/10.1021/acsnano.7b01385CTLiposomesX-raysIodixanol-containing liposomesShort scan time, high density resolution, high lesion detection rateRadiation, low spatial resolution, low sensitivity3131. P. Kee, V. Bagalkot, E. Johnson, and D. Danila, “ Noninvasive detection of macrophages in atheroma using a radiocontrast-loaded phosphatidylserine-containing liposomal contrast agent for computed tomography,” Mol. Imaging Biol. 17, 328–336 (2015). https://doi.org/10.1007/s11307-014-0798-0USPolymeric NPsUltrasound wavesPerfluorooctyl bromide (PFOB) NPs, perfluoropentane (PFP) NPsSimple, real-time imaging, low costLimited tissue-penetration depth, low resolution3232. S. Li, T. Gou, Q. Wang, M. Chen, Z. Chen, M. Xu et al., “ Ultrasound/optical dual-modality imaging for evaluation of vulnerable atherosclerotic plaques with osteopontin targeted nanoparticles,” Macromol. Biosci. 20, e1900279 (2020). https://doi.org/10.1002/mabi.201900279, 3333. B. Gao, J. Xu, J. Zhou, H. Zhang, R. Yang, H. Wang et al., “ Multifunctional pathology-mapping theranostic nanoplatforms for US/MR imaging and ultrasound therapy of atherosclerosis,” Nanoscale 13, 8623–8638 (2021). https://doi.org/10.1039/D1NR01096D

Comments (0)

No login
gif